Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem C Nanomater Interfaces ; 127(49): 23956-23965, 2023 Dec 14.
Article in English | MEDLINE | ID: mdl-38115817

ABSTRACT

The tuning of micropore environments in zeolitic imidazolate frameworks (ZIFs) by mixed-linker synthesis has the potential for enabling new molecular separation properties. However, de novo synthesis of mixed-linker (hybrid) ZIFs is often challenging due to the disparate chemical properties of the different linkers. Here, we elucidate the structure and properties of an unconventional ZIF-8-7 hybrid material synthesized via a controlled-acid-gas-assisted degradation and reconstruction (solvent-assisted crystal redemption, SACRed) strategy. Selective insertion of benzimidazole (ZIF-7 linker) into ZIF-8 using SACRed is used as a facile method to generate a ZIF-8-7 hybrid material that is otherwise difficult to synthesize by de novo methods. Detailed crystal structure and textural characterizations clarify the significant differences in the microstructure of the SACRed-derived ZIF-8-7 hybrid material relative to a de novo synthesized hybrid of the same overall linker composition as well as the parent ZIF-8 material. Unary and binary adsorption measurements reveal the tunability of adsorption characteristics as well as the prevalence of nonideal cooperative mixture adsorption effects that lead to large deviations from predictions made with ideal adsorbed solution theory.

2.
ACS Appl Mater Interfaces ; 13(47): 56337-56347, 2021 Dec 01.
Article in English | MEDLINE | ID: mdl-34793131

ABSTRACT

In the pursuit of highly stable and selective metal-organic frameworks (MOFs) for the adsorption of caustic acid gas species, an entire series of rare earth MOFs have been explored. Each of the MOFs in this series (RE-DOBDC; RE = La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu; DOBDC = 2,5-dihydroxyterepthalic acid) was synthesized in the tetragonal space group I4/m. Crystallized MOF samples, specifically Eu-DOBDC, were seen to have a combination of monodentate and bidentate binding when synthesized under typical reaction conditions, resulting in a contortion of the structure. However, extended crystallization times determined that this binding is kinetically controlled and that the monodentate binding option was crystallographically eliminated by extended reaction times at higher temperatures. Furthermore, this series allows for the direct study of the effect of the metal center on the structure of the of the MOF; herein, the lanthanide metal ionic radii contraction across the periodic table results in a reduction of the MOF pore size and lattice parameters. Scanning electron microscopy-energy-dispersive spectroscopy was used to investigate the stages of crystal growth for these RE-DOBDC MOFs. All MOFs, except Er-DOBDC had a minimum of two stages of growth. These analogues were demonstrated by analysis of neutron diffraction (PND) to exhibit a cooperative rotational distortion of the secondary building unit, resulting in two crystallographically distinct linker sublattices. Computational modeling efforts were used to show distinct differences on acid gas (NO2 and SO2) binding energies for RE-DOBDC MOFs when comparing the monodentate/bidentate combined linker with the bidentate-only linker crystal structures.

3.
RSC Adv ; 10(3): 1484-1497, 2020 Jan 07.
Article in English | MEDLINE | ID: mdl-35494712

ABSTRACT

This work reports the layer-tunnel conversion of porous dehydrated synthetic alkali-free δ-MnO2 analogs prepared by exfoliation, flocculation, and heat treatment of nanosheets derived from highly crystalline potassium birnessite. High surface area porous solids result, with specific surface areas of 90-130 m2 g-1 and isotherms characteristic of both micro and macropores. The microstructures of the re-assembled floccules are reminiscent of crumpled paper where single and re-stacked nanosheets form the walls of interconnected macropores. The atomic and local structures of the floccules heat treated from 60-400 °C are tracked by Raman spectroscopy and synchrotron X-ray total scattering measurements. During heating, the nanosheets comprising the pore walls condense to form tunnel-structured fragments beginning at temperatures below 100 °C, while the microstructure with high surface area remains intact. The flocc microstructure remains largely unchanged in samples heated up to 400 °C while an increasing fraction of the sample is transformed, at least locally, to possess 1D tunnels characteristic of α-MnO2. Cyclic voltammetry in Na2SO4 aqueous electrolyte reflects the nanoscale structural evolution, where intercalative pseudocapacitance diminishes with the degree of transformation. Collectively, these results demonstrate that it is feasible to tailor the materials for applications incorporating nanoporous solids and nanofluidics, and specifically imply strategies to maintain a kinetically accessible interlayer contribute to Na intercalative pseudocapacitance.

4.
Nanoscale Adv ; 2(7): 2758-2767, 2020 Jul 14.
Article in English | MEDLINE | ID: mdl-36132382

ABSTRACT

Thermal decomposition of an iron-based MOF was conducted under controlled gas environments to understand the resulting porous carbon structure. Different phases and crystallite sizes of iron oxide are produced based on the specific gas species. In particular, air resulted in iron(iii) oxide, and D2O and CO2 resulted in the mixed valent iron(ii,iii) oxide. Performing the carbonization under non-oxidative or reducing conditions (N2, He, H2) resulted in the formation of a mixture of both iron(ii,iii) oxide and iron(iii) oxide. Based on in situ and air-free handling experiments, it was observed that this is partially due to the formation of zero-valent iron metal that is rapidly oxidized when exposed to air. Neutron pair distribution function analysis provided insight into the effect of the gas environment on the local structure of the porous carbon, indicating a noticeable change in local order between the D2O and the N2 calcined samples.

SELECTION OF CITATIONS
SEARCH DETAIL
...