Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Geochem Trans ; 15: 9, 2014.
Article in English | MEDLINE | ID: mdl-25045321

ABSTRACT

We have studied the impact of dissolved aluminum on interfacial properties of two aluminum bearing minerals, corundum and kaolinite. The effect of intentionally adding dissolved aluminum on electrokinetic potential of basal plane surfaces of sapphire was studied by streaming potential measurements as a function of pH and was complemented by a second harmonic generation (SHG) study at pH 6. The electrokinetic data show a similar trend as the SHG data, suggesting that the SHG electric field correlates to zeta-potential. A comparable study was carried out on kaolinite particles. In this case electrophoretic mobility was measured as a function of pH. In both systems the addition of dissolved aluminum caused significant changes in the charging behavior. The isoelectric point consistently shifted to higher pH values, the extent of the shift depending on the amount of aluminum present or added. The experimental results imply that published isoelectric points of clay minerals may have been affected by this phenomenon. The presence of dissolved aluminum in experimental studies may be caused by particular pre-treatment methods (such as washing in acids and subsequent adsorption of dissolved aluminum) or even simply by starting a series of measurements from extreme pH (causing dissolution), and subsequently varying the pH in the very same batch. This results in interactions of dissolved aluminum with the target surface. A possible interpretation of the experimental results could be that at low aluminum concentrations adatoms of aluminum (we will refer to adsorbed mineral constituents as adatoms) can form at the sapphire basal plane, which can be rather easily removed. Simultaneously, once the surface has been exposed to sufficiently high aluminum concentration, a visible change of the surface is seen by AFM which is attributed to a surface precipitate that cannot be removed under the conditions employed in the current study. In conclusion, whenever pre-treatment or the starting point of an experiment favor the dissolution of aluminum, dissolved Al may remain in the experimental system and interact with the target surfaces. The systems are then no longer pristine and points of zero charge or sorption data are those of aluminum-bearing systems.

2.
J Colloid Interface Sci ; 264(1): 67-75, 2003 Aug 01.
Article in English | MEDLINE | ID: mdl-12885520

ABSTRACT

The aim of the present study is to compare available surface titration curves of kaolinite, to explain the differences between them, and to constrain their interpretation based on predictions of surface protonation that emerged from dissolution experiments. Comparison of six surface titration curves obtained at 25 degrees C reveals significant discrepancies, both in the shape of the curves and in the pH of the point of zero net proton charge (pH(PZNPC)). Based on an analysis of the different sites available for adsorption on kaolinite surfaces we conclude that different kaolinite samples are expected to have similar pH(PZNPC). Therefore, the major reason for the differences in the observed surface protonation is related to the different ways in which the pH(PZNPC) was determined. To compare the titration curves, some of the curves were recalculated so that the proton surface concentrations of all the titration curves would be zero around pH 5. As a result, we obtained a good agreement between the titration curves. A prediction of the molar fraction of protonated sites was retrieved from modeling of kaolinite dissolution reaction and was compared to the protonation data obtained from surface titration. The model successfully predicts the surface protonation data of most of the surface titrations.


Subject(s)
Kaolin/chemistry , Hydrogen-Ion Concentration , Kinetics , Protons , Solubility , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...