Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Dev Biol ; 513: 33-49, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38797257

ABSTRACT

Regeneration, regrowing lost and injured body parts, is an ability that generally declines with age or developmental transitions (i.e. metamorphosis, sexual maturation). Regeneration is also an energetically costly process, and trade-offs occur between regeneration and other costly processes such as growth, or sexual reproduction. Here we investigate the interplay of regeneration, reproduction, and developmental stage in the segmented worm Platynereis dumerilii. P. dumerilii can regenerate its whole posterior body axis, along with its reproductive cells, thereby having to carry out the two costly processes (somatic and germ cell regeneration) after injury. We specifically examine how developmental stage affects the success of germ cell regeneration and sexual maturation in developmentally young versus developmentally old organisms. We hypothesized that developmentally younger individuals (i.e. with gametes in early mitotic stages) will have higher regeneration success than the individuals at developmentally older stages (i.e. with gametes undergoing meiosis and maturation). Surprisingly, older amputated worms grew faster and matured earlier than younger amputees. To analyze germ cell regeneration during and after posterior regeneration, we used Hybridization Chain Reaction for the germline marker vasa. We found that regenerated worms start repopulating new segments with germ cell clusters as early as 14 days post amputation. In addition, vasa expression is observed in a wide region of newly-regenerated segments, which appears different from expression patterns during normal growth or regeneration in worms before gonial cluster expansion.


Subject(s)
Germ Cells , Regeneration , Sexual Maturation , Animals , Regeneration/physiology , Sexual Maturation/physiology , Polychaeta/genetics , Polychaeta/physiology
2.
J Exp Zool B Mol Dev Evol ; 338(4): 225-240, 2022 06.
Article in English | MEDLINE | ID: mdl-34793615

ABSTRACT

Development of sexual characters and generation of gametes are tightly coupled with growth. Platynereis dumerilii is a marine annelid that has been used to study germline development and gametogenesis. P. dumerilii has germ cell clusters found across the body in the juvenile worms, and the clusters eventually form the gametes. Like other segmented worms, P. dumerilii grows by adding new segments at its posterior end. The number of segments reflect the growth state of the worms and therefore is a useful and measurable growth state metric to study the growth-reproduction crosstalk. To understand how growth correlates with progression of gametogenesis, we investigated germline development across several developmental stages. We discovered a distinct transition period when worms increase the number of germline clusters at a particular segment number threshold. Additionally, we found that keeping worms short in segment number, by manipulating environmental conditions or via amputations, supported a segment number threshold requirement for germline development. Finally, we asked if these clusters in P. dumerilii play a role in regeneration (as similar free-roaming cells are observed in Hydra and planarian regeneration) and found that the clusters were not required for regeneration in P. dumerilii, suggesting a strictly germline nature. Overall, these molecular analyses suggest a previously unidentified developmental transition dependent on the growth state of juvenile P. dumerilii leading to substantially increased germline expansion.


Subject(s)
Annelida , Polychaeta , Animals , Germ Cells , Polychaeta/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...