Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
1.
Sci Immunol ; 6(61)2021 07 16.
Article in English | MEDLINE | ID: mdl-34272227

ABSTRACT

Cytoplasmic double-stranded RNA is sensed by RIG-I-like receptors (RLRs), leading to induction of type I interferons (IFN-Is), proinflammatory cytokines, and apoptosis. Here, we elucidate signaling mechanisms that lead to cytokine secretion and cell death induction upon stimulation with the bona fide RIG-I ligand 5'-triphosphate RNA (3p-RNA) in tumor cells. We show that both outcomes are mediated by dsRNA-receptor families with RLR being essential for cytokine production and IFN-I-mediated priming of effector pathways but not for apoptosis. Affinity purification followed by mass spectrometry and subsequent functional analysis revealed that 3p-RNA bound and activated oligoadenylate synthetase 1 and RNase L. RNase L-deficient cells were profoundly impaired in their ability to undergo apoptosis. Mechanistically, the concerted action of translational arrest triggered by RNase L and up-regulation of NOXA was needed to deplete the antiapoptotic MCL-1 to cause intrinsic apoptosis. Thus, 3p-RNA-induced apoptosis is a two-step process consisting of RIG-I-dependent priming and an RNase L-dependent effector phase.


Subject(s)
2',5'-Oligoadenylate Synthetase/immunology , Endoribonucleases/immunology , Neoplasms/immunology , Receptors, Retinoic Acid/immunology , 2',5'-Oligoadenylate Synthetase/genetics , Adaptor Proteins, Signal Transducing/genetics , Animals , Apoptosis , Cell Line, Tumor , Coculture Techniques , DEAD Box Protein 58/genetics , Endoribonucleases/genetics , Humans , Interferon-Induced Helicase, IFIH1/genetics , Ligands , Mice , Receptors, Immunologic/genetics
2.
Nat Biomed Eng ; 5(11): 1246-1260, 2021 11.
Article in English | MEDLINE | ID: mdl-34083764

ABSTRACT

The efficacy of adoptive cell therapy for solid tumours is hampered by the poor accumulation of the transferred T cells in tumour tissue. Here, we show that forced expression of C-X-C chemokine receptor type 6 (whose ligand is highly expressed by human and murine pancreatic cancer cells and tumour-infiltrating immune cells) in antigen-specific T cells enhanced the recognition and lysis of pancreatic cancer cells and the efficacy of adoptive cell therapy for pancreatic cancer. In mice with subcutaneous pancreatic tumours treated with T cells with either a transgenic T-cell receptor or a murine chimeric antigen receptor targeting the tumour-associated antigen epithelial cell adhesion molecule, and in mice with orthotopic pancreatic tumours or patient-derived xenografts treated with T cells expressing a chimeric antigen receptor targeting mesothelin, the T cells exhibited enhanced intratumoral accumulation, exerted sustained anti-tumoral activity and prolonged animal survival only when co-expressing C-X-C chemokine receptor type 6. Arming tumour-specific T cells with tumour-specific chemokine receptors may represent a promising strategy for the realization of adoptive cell therapy for solid tumours.


Subject(s)
Immunotherapy, Adoptive , Pancreatic Neoplasms , Receptors, CXCR6/metabolism , T-Lymphocytes , Animals , Cell- and Tissue-Based Therapy , Mesothelin , Mice , Pancreatic Neoplasms/therapy , Receptors, Chemokine/genetics
3.
Xenotransplantation ; 28(2): e12660, 2021 03.
Article in English | MEDLINE | ID: mdl-33350016

ABSTRACT

BACKGROUND: Cartilage shortage is a major problem in facial reconstructive surgery. Prior studies have shown that decellularized porcine nasal septal cartilage (DPNC) seeded with primary human nasal chondrocytes enabled cartilage regeneration and showed potential as a replacement material for nasal cartilage. Since adipose tissue-derived stem cells (ASCs) are easily accessible and almost abundantly available, they appear to be a promising alternative to limited chondrocytes making the combination of DPNC and ASCs a feasible approach towards clinical translation. Thus, this study was intended to investigate the interactions between ASCs and DPNC in an in vitro model. METHODS: DPNCs were seeded and 3D-cultured with primary human ASCs that were priorly characterized with trilineage differentiation and flow cytometry. Cell vitality and proliferation were evaluated by Live-Dead, alamarBlue, and PicoGreen assays. Chondrogenic differentiation was examined by DMMB assay and cryosectioning-based histology. Cell invasion within DPNC was visualized and quantified by fluorescent histology (DAPI, Phalloidin). RESULTS: ASCs showed good adherence to DPNC and Live-Dead assay proved their viability over 2 weeks. AlamarBlueassay showed an increase in metabolic activity compared to 2D cultures, and PicoGreen assay demonstrated an increase of cell number within DPNC over time. Biochemical assays and histology added evidence of chondrogenic differentiation of 3D-cultured ASCs under the influence of chondrogenic induction medium. Fluorescent image analysis showed a significant increase of cell-occupied areas of scaffolds over time (P < .05). CONCLUSIONS: DPNC scaffolds provided a suitable environment for ASCs that allowed good cell vitality, high proliferation, and chondrogenic differentiation. Thus, the use of ASCs and DPNC yields a promising alternative to the use of primary human chondrocytes. For facial cartilage tissue engineering, we regard ASCs as an attractive alternative to human nasal chondrocytes due to their better accessibility and availability. Further research will be necessary to determine long-term effects and in vivo outcomes of ASCs and DPNC in cartilage regeneration of the face.


Subject(s)
Nasal Cartilages , Stem Cells , Adipose Tissue , Animals , Humans , Regeneration , Swine , Transplantation, Heterologous
4.
J Exp Med ; 217(9)2020 09 07.
Article in English | MEDLINE | ID: mdl-32678432

ABSTRACT

An exacerbated and unbalanced immune response may account for the severity of COVID-19, the disease caused by the novel severe acute respiratory syndrome (SARS) coronavirus 2, SARS-CoV-2. In this Viewpoint, we summarize recent evidence for the role of neutrophils in the pathogenesis of COVID-19 and propose CXCR2 inhibition as a promising treatment option to block neutrophil recruitment and activation.


Subject(s)
Betacoronavirus , Coronavirus Infections/epidemiology , Pandemics , Pneumonia, Viral , COVID-19 , Humans , Inflammation , SARS-CoV-2
5.
J Allergy Clin Immunol Pract ; 8(9): 3102-3111, 2020 10.
Article in English | MEDLINE | ID: mdl-32603902

ABSTRACT

BACKGROUND: Complete signal transducer and activator of transcription 1 (STAT1) deficiency causes a rare primary immunodeficiency that is characterized by defective IFN-dependent gene expression leading to life-threatening viral and mycobacterial infections early in life. OBJECTIVE: To characterize a novel STAT1 loss-of-function variant leading to pathological infection susceptibility and hyperinflammation. METHODS: Clinical, immunologic, and genetic characterization of a patient with severe infections and hemophagocytic lymphohistiocytosis-like hyperinflammation was investigated. RESULTS: We reported a child of consanguineous parents who presented with multiple severe viral infections that ultimately triggered hemophagocytic lymphohistiocytosis and liver failure. Despite intensified therapy with antivirals and cytomegalovirus-specific donor cells, the child died after hematopoietic stem cell transplantation because of cytomegalovirus reactivation with acute respiratory distress syndrome. Exome sequencing revealed a homozygous STAT1 variant (p.Val339ProfsTer18), leading to loss of STAT1 protein expression. Upon type I and type II IFN stimulation, immune and nonimmune cells showed defective upregulation of IFN-stimulated genes and increased susceptibility to viral infection in vitro. Increased viral infection rates were paralleled by hyperinflammatory ex vivo cytokine responses with increased production of TNF, IL-6, and IL-18. CONCLUSIONS: Complete STAT1 deficiency is a devastating disorder characterized by severe viral infections and ensuing hyperinflammatory responses. Early diagnosis can be made by exome sequencing and variant validation by functional testing of STAT1-dependent programmed cell death 1 ligand 1 surface expression on monocytes. Furthermore, high awareness for hyperinflammatory complications and potential targeted treatment strategies such as IL-18 binding protein could be considered. Hematopoietic stem cell transplantation is the only definitive treatment strategy but remains challenging.


Subject(s)
Hematopoietic Stem Cell Transplantation , Immunologic Deficiency Syndromes , Lymphohistiocytosis, Hemophagocytic , Virus Diseases , Child , Cytomegalovirus , Humans , Immunologic Deficiency Syndromes/diagnosis , Immunologic Deficiency Syndromes/genetics , Lymphohistiocytosis, Hemophagocytic/diagnosis , Lymphohistiocytosis, Hemophagocytic/genetics , STAT1 Transcription Factor/genetics
6.
Cancer Immunol Immunother ; 69(10): 2101-2112, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32448983

ABSTRACT

Pancreatic ductal adenocarcinoma is characterized by a strong immunosuppressive network with a dense infiltration of myeloid cells including myeloid-derived suppressor cells (MDSC). Two distinct populations of MDSC have been defined: polymorphonuclear MDSC (PMN-MDSC) and monocytic MDSC (M-MDSC). Several factors influence the development and function of MDSC including the transcription factor interferon regulatory factor 4 (IRF4). Here, we show that IRF4 deficiency accelerates tumor growth and reduces survival, accompanied with a dense tumor infiltration with PMN-MDSC and reduced numbers of CD8+ T cells. As IRF4 has been described to modulate myeloid cell development and function, particularly of PMN-MDSC, we analyzed its role using MDSC-specific IRF4 knockout mice with the Ly6G or LysM knock-in allele expressing Cre recombinase and Irf4flox. In GM-CSF-driven bone marrow cultures, IRF4 deficiency increased the frequency of MDSC-like cells with a strong T cell suppressive capacity. Myeloid (LysM)-specific depletion of IRF4 led to increased tumor weight and a moderate splenic M-MDSC expansion in tumor-bearing mice. PMN cell (Ly6G)-specific depletion of IRF4, however, did not influence tumor progression or MDSC accumulation in vivo in accordance with our finding that IRF4 is not expressed in PMN-MDSC. This study demonstrates a critical role of IRF4 in the generation of an immunosuppressive tumor microenvironment in pancreatic cancer, which is independent of IRF4 expression in PMN-MDSC.


Subject(s)
Biomarkers, Tumor/analysis , CD8-Positive T-Lymphocytes/immunology , Interferon Regulatory Factors/physiology , Myeloid-Derived Suppressor Cells/immunology , Pancreatic Neoplasms/immunology , Tumor Microenvironment/immunology , Animals , Apoptosis , CD8-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/pathology , Cell Proliferation , Disease Models, Animal , Humans , Immunosuppression Therapy , Mice , Mice, Knockout , Myeloid-Derived Suppressor Cells/metabolism , Myeloid-Derived Suppressor Cells/pathology , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/pathology , Prognosis , Survival Rate , Tumor Cells, Cultured
7.
J Immunother Cancer ; 7(1): 349, 2019 Dec 16.
Article in English | MEDLINE | ID: mdl-31843014

ABSTRACT

Following publication of the original article [1], the authors have reported that Fig. 2 and Additional file 1: Figure S1, S2 partially show red scripts.

8.
J Immunother Cancer ; 7(1): 288, 2019 11 06.
Article in English | MEDLINE | ID: mdl-31694706

ABSTRACT

BACKGROUND: The tumor microenvironment (TME) combines features of regulatory cytokines and immune cell populations to evade the recognition by the immune system. Myeloid-derived suppressor cells (MDSC) comprise populations of immature myeloid cells in tumor-bearing hosts with a highly immunosuppressive capacity. We could previously identify RIG-I-like helicases (RLH) as targets for the immunotherapy of pancreatic cancer inducing immunogenic tumor cell death and type I interferons (IFN) as key mediators linking innate with adaptive immunity. METHODS: Mice with orthotopically implanted KrasG12D p53fl/R172H Ptf1a-Cre (KPC) pancreatic tumors were treated intravenously with the RLH ligand polyinosinic-polycytidylic acid (poly(I:C)), and the immune cell environment in tumor and spleen was characterized. A comprehensive analysis of the suppressive capacity as well as the whole transcriptomic profile of isolated MDSC subsets was performed. Antigen presentation capability of MDSC from mice with ovalbumin (OVA)-expressing tumors was investigated in T cell proliferation assays. The role of IFN in MDSC function was investigated in Ifnar1-/- mice. RESULTS: MDSC were strongly induced in orthotopic KPC-derived pancreatic cancer, and frequencies of MDSC subsets correlated with tumor weight and G-CSF serum levels, whereas other immune cell populations decreased. Administration of the RLH-ligand induced a IFN-driven immune response, with increased activation of T cells and dendritic cells (DC), and a reduced suppressive capacity of both polymorphonuclear (PMN)-MDSC and monocytic (M)-MDSC fractions. Whole transcriptomic analysis confirmed an IFN-driven gene signature of MDSC, a switch from a M2/G2- towards a M1/G1-polarized phenotype, and the induction of genes involved in the antigen presentation machinery. Nevertheless, MDSC failed to present tumor antigen to T cells. Interestingly, we found MDSC with reduced suppressive function in Ifnar1-deficient hosts; however, there was a common flaw in immune cell activation, which was reflected by defective immune cell activation and tumor control. CONCLUSIONS: We provide evidence that the treatment with immunostimulatory RNA reprograms the TME of pancreatic cancer by reducing the suppressive activity of MDSC, polarizing myeloid cells into a M1-like state and recruiting DC. We postulate that tumor cell-targeting combination strategies may benefit from RLH-based TME remodeling. In addition, we provide novel insights into the dual role of IFN signaling in MDSC's suppressive function and provide evidence that host-intrinsic IFN signaling may be critical for MDSC to gain suppressive function during tumor development.

9.
Front Immunol ; 10: 2162, 2019.
Article in English | MEDLINE | ID: mdl-31632388

ABSTRACT

Ischemia reperfusion injury (IRI) of the kidney results in interferon regulatory factor 4 (IRF4)-mediated counter-regulation of the acute inflammatory response. Beyond that, IRF4 exerts important functions in controlling the cytokine milieu, T-cell differentiation, and macrophage polarization. The latter has been implicated in tissue remodeling. It therefore remains elusive what the role of IRF4 is in terms of long-term outcome following IRI. We hypothesized that an inability to resolve chronic inflammation in Irf4-/- mice would promote chronic kidney disease (CKD) progression. To evaluate the effects of IRF4 in chronic upon acute injury in vivo, a mouse model of chronic injury following acute IRI was employed. The expression of Irf4 increased within 10 days after IRI in renal tissue. Both mRNA and protein levels remained high up to 5 weeks upon IRI, suggesting a regulatory function in the chronic phase. Mice deficient in IRF4 display increased tubular cell loss and defective clearance of infiltrating macrophages. These phenomena were associated with increased expression of pro-inflammatory macrophage markers together with reduced expression of alternatively activated macrophage markers. In addition, IRF4-deficient mice showed defective development of alternatively activated macrophages. Hints of a residual M1 macrophage signature were further observed in human biopsy specimens of patients with hypertensive nephropathy vs. living donor specimens. Thus, IRF4 restricts CKD progression and kidney fibrosis following IRI, potentially by enabling M2 macrophage polarization and restricting a Th1 cytokine response. Deteriorated alternative macrophage subpopulations in Irf4-/- mice provoke chronic intrarenal inflammation, tubular epithelial cell loss, and renal fibrosis in the long course after IRI in mice. The clinical significance of these finding for human CKD remains uncertain at present and warrants further studies.


Subject(s)
Disease Susceptibility , Interferon Regulatory Factors/genetics , Renal Insufficiency, Chronic/etiology , Renal Insufficiency, Chronic/prevention & control , Reperfusion Injury/complications , Reperfusion Injury/genetics , Animals , Disease Models, Animal , Disease Progression , Female , Humans , Macrophage Activation/genetics , Macrophage Activation/immunology , Macrophages/immunology , Macrophages/metabolism , Mice , Mice, Knockout , Regeneration , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism
10.
Radiat Oncol ; 14(1): 141, 2019 Aug 08.
Article in English | MEDLINE | ID: mdl-31395068

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) is a highly devastating disease with poor prognosis and rising incidence. Late detection and a particularly aggressive biology are the major challenges which determine therapeutic failure. In this review, we present the current status and the recent advances in PDAC treatment together with the biological and immunological hallmarks of this cancer entity. On this basis, we discuss new concepts combining distinct treatment modalities in order to improve therapeutic efficacy and clinical outcome - with a specific focus on protocols involving radio(chemo)therapeutic approaches.


Subject(s)
Adenocarcinoma/therapy , Carcinoma, Pancreatic Ductal/therapy , Pancreatic Neoplasms/therapy , Adenocarcinoma/pathology , Carcinoma, Pancreatic Ductal/pathology , Combined Modality Therapy , Humans , Pancreatic Neoplasms/pathology , Prognosis
11.
Sci Rep ; 8(1): 8810, 2018 06 11.
Article in English | MEDLINE | ID: mdl-29892077

ABSTRACT

Checkpoint molecules such as programmed death 1 (PD-1) dampen excessive T cell activation to preserve immune homeostasis. PD-1-specific monoclonal antibodies have revolutionized cancer therapy, as they reverse tumour-induced T cell exhaustion and restore CTL activity. Based on this success, deciphering underlying mechanisms of PD-1-mediated immune functions has become an important field of immunological research. Initially described for T cells, there is emerging evidence of unconventional PD-1 expression by myeloid as well as tumor cells, yet, with cell-intrinsic functions in various animal tumor models. Here, we describe positive PD-1 antibody staining of various murine immune and tumour cells that is, unlike for T cells, not the PD-1 receptor and restricted to cells with low forward scatter characteristics. Based on flow cytometry and various approaches, including two established murine anti-PD-1 antibody clones, CRISPR/Cas9 genome editing and confocal imaging, we describe a staining pattern assigned to a nuclear antigen cross-reacting with anti-PD-1 monoclonal antibodies. Lack of PD-1 expression was further underlined by the analysis of PD-1 expression from B16-F10-derived 3D cultures and ex vivo tumours. Thus, our data provide multiple lines of evidence that PD-1 expression by non-T cells is unlikely to be the case and, taking recent data of PD-1 tumour cell-intrinsic functions into account, suggest that other antibody-mediated pathways might apply.


Subject(s)
Antibodies, Monoclonal/immunology , Antigens, Nuclear/immunology , Cross Reactions , Programmed Cell Death 1 Receptor/immunology , Animals , Cell Line , Flow Cytometry , Fluorescent Antibody Technique , Mice, Inbred C57BL , Microscopy, Confocal
12.
Eur J Pharm Biopharm ; 112: 177-186, 2017 Mar.
Article in English | MEDLINE | ID: mdl-27865934

ABSTRACT

Following intravitreal (IVT) injection, therapeutic proteins get exposed to physiological pH, temperature and components in the vitreous humor (VH) for a significantly long time. Therefore, it is of interest to study the stability of the proteins in the VH. However, the challenge posed by the isolated VH (such as pH shift upon isolation and incubation due to the formation of smaller molecular weight (MW) degradation products) can result in artefacts when investigating protein stability in relevance for the actual in vivo situation. In this current study, an ex-vivo intravitreal horizontal stability model (ExVit-HS) has been successfully developed and an assessment of long-term stability of a bi-specific monoclonal antibody (mAb) drug in the isolated VH for 3months at physiological conditions has been conducted. The stability assessment was performed using various analytical techniques such as microscopy, UV visible for protein content, target binding ELISA, Differential Scanning Calorimetry (DSC), Capillary-electrophoresis-SDS, Size Exclusion (SEC) and Ion-exchange chromatography (IEC) and SPR-Biacore. The results show that the ExVit-HS model was successful in maintaining the VH at physiological conditions and retained a majority of protein in the VH-compartment throughout the study period. The mAb exhibited significantly less fragmentation in the VH relative to the PBS control; however, chemical stability of the mAb was equally compromised in VH and PBS. Interestingly, in the PBS control, mAb showed a rapid linear loss in the binding affinity. The loss in binding was almost 20% higher compared to that in VH after 3months. The results clearly suggest that the mAb has different degradation kinetics in the VH compared to PBS. These results suggest that it is beneficial to investigate the stability in the VH for drugs intended for IVT injection and that are expected longer residence times in the VH. The studies show that the ExVit-HS model may become a valuable tool for evaluating stability of protein drugs and other molecules following IVT injection.


Subject(s)
Antibodies, Monoclonal/administration & dosage , Eye/metabolism , Animals , Antibodies, Monoclonal/chemistry , Calorimetry, Differential Scanning , Chromatography, Liquid , Drug Stability , In Vitro Techniques , Surface Plasmon Resonance , Swine
13.
Nat Struct Mol Biol ; 23(2): 132-9, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26751641

ABSTRACT

Prostate cancer evolution is driven by a combination of epigenetic and genetic alterations such as coordinated chromosomal rearrangements, termed chromoplexy. TMPRSS2-ERG gene fusions found in human prostate tumors are a hallmark of chromoplexy. TMPRSS2-ERG fusions have been linked to androgen signaling and depend on androgen receptor (AR)-coupled gene transcription. Here, we show that dimethylation of KDM1A at K114 (to form K114me2) by the histone methyltransferase EHMT2 is a key event controlling androgen-dependent gene transcription and TMPRSS2-ERG fusion. We identified CHD1 as a KDM1A K114me2 reader and characterized the KDM1A K114me2-CHD1 recognition mode by solving the cocrystal structure. Genome-wide analyses revealed chromatin colocalization of KDM1A K114me2, CHD1 and AR in prostate tumor cells. Together, our data link the assembly of methylated KDM1A and CHD1 with AR-dependent transcription and genomic translocations, thereby providing mechanistic insight into the formation of TMPRSS2-ERG gene fusions during prostate-tumor evolution.


Subject(s)
DNA Helicases/metabolism , DNA-Binding Proteins/metabolism , Histone Demethylases/metabolism , Oncogene Proteins, Fusion/genetics , Prostatic Neoplasms/genetics , Receptors, Androgen/metabolism , Translocation, Genetic , Cell Line , Crystallography, X-Ray , DNA Helicases/analysis , DNA-Binding Proteins/analysis , Gene Expression Regulation, Neoplastic , Histocompatibility Antigens/metabolism , Histone Demethylases/analysis , Histone-Lysine N-Methyltransferase/metabolism , Humans , Male , Methylation , Models, Molecular , Prostatic Neoplasms/metabolism , Receptors, Androgen/analysis , Transcription, Genetic
14.
PLoS One ; 10(5): e0126716, 2015.
Article in English | MEDLINE | ID: mdl-25974183

ABSTRACT

It is well accepted that aging and HIV infection are associated with quantitative and functional changes of CMV-specific T cell responses. We studied here the expression of Mip-1ß and the T cell maturation marker CD27 within CMVpp65-specific CD4(+) and CD8(+) T cells in relation to age, HIV and active Tuberculosis (TB) co-infection in a cohort of Tanzanian volunteers (≤ 16 years of age, n = 108 and ≥ 18 years, n = 79). Independent of HIV co-infection, IFNγ(+) CMVpp65-specific CD4(+) T cell frequencies increased with age. In adults, HIV co-infection further increased the frequencies of these cells. A high capacity for Mip-1ß production together with a CD27(low) phenotype was characteristic for these cells in children and adults. Interestingly, in addition to HIV co-infection active TB disease was linked to further down regulation of CD27 and increased capacity of Mip-1ß production in CMVpp65-specific CD4+ T cells. These phenotypic and functional changes of CMVpp65-specific CD4 T cells observed during HIV infection and active TB could be associated with increased CMV reactivation rates.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Chemokine CCL4/metabolism , Cytomegalovirus Infections/immunology , HIV Infections/immunology , Tuberculosis/immunology , Adolescent , Adult , Age Factors , CD4-Positive T-Lymphocytes/virology , CD8-Positive T-Lymphocytes/virology , Child , Cohort Studies , Coinfection/immunology , Cytomegalovirus/immunology , Cytomegalovirus Infections/complications , Cytomegalovirus Infections/virology , HIV Infections/complications , HIV Infections/diagnosis , Humans , Interferon-gamma/metabolism , Male , Phosphoproteins/metabolism , Risk Factors , Tanzania , Tuberculosis/complications , Tuberculosis/diagnosis , Tumor Necrosis Factor Receptor Superfamily, Member 7/metabolism , Viral Matrix Proteins/metabolism , Young Adult
15.
MAbs ; 6(2): 327-39, 2014.
Article in English | MEDLINE | ID: mdl-24441081

ABSTRACT

Modifications like asparagine deamidation, aspartate isomerization, methionine oxidation, and lysine glycation are typical degradations for recombinant antibodies. For the identification and functional evaluation of antibody critical quality attributes (CQAs) derived from chemical modifications in the complementary-determining regions (CDRs) and the conserved regions, an approach employing specific stress conditions, elevated temperatures, pH, oxidizing agents, and forced glycation with glucose incubation, was applied. The application of the specific stress conditions combined with ion exchange chromatography, proteolytic peptide mapping, quantitative liquid chromatography mass spectrometry, and functional evaluation by surface plasmon resonance analysis was adequate to identify and functionally assess chemical modification sites in the CDRs of a recombinant IgG1. LC-Met-4, LC-Asn-30/31, LC-Asn-92, HC-Met-100c, and HC Lys-33 were identified as potential CQAs. However, none of the assessed degradation products led to a complete loss of functionality if only one light or heavy chain of the native antibody was affected.


Subject(s)
Complementarity Determining Regions/metabolism , Glycation End Products, Advanced/metabolism , Immunoglobulin G/metabolism , Peptide Mapping/methods , Recombinant Proteins/metabolism , Chromatography, Ion Exchange , Chromatography, Liquid , Hot Temperature , Humans , Hydrogen-Ion Concentration , Mass Spectrometry , Oxidative Stress , Protein Processing, Post-Translational , Proteolysis , Surface Plasmon Resonance
16.
Clin Transl Immunology ; 2(4): e3, 2013 Apr.
Article in English | MEDLINE | ID: mdl-25505951

ABSTRACT

Breastmilk protects infants against infections; however, specific responses of breastmilk immune factors to different infections of either the mother or the infant are not well understood. Here, we examined the baseline range of breastmilk leukocytes and immunomodulatory biomolecules in healthy mother/infant dyads and how they are influenced by infections of the dyad. Consistent with a greater immunological need in the early postpartum period, colostrum contained considerable numbers of leukocytes (13-70% out of total cells) and high levels of immunoglobulins and lactoferrin. Within the first 1-2 weeks postpartum, leukocyte numbers decreased significantly to a low baseline level in mature breastmilk (0-2%) (P<0.001). This baseline level was maintained throughout lactation unless the mother and/or her infant became infected, when leukocyte numbers significantly increased up to 94% leukocytes out of total cells (P<0.001). Upon recovery from the infection, baseline values were restored. The strong leukocyte response to infection was accompanied by a more variable humoral immune response. Exclusive breastfeeding was associated with a greater baseline level of leukocytes in mature breastmilk. Collectively, our results suggest a strong association between the health status of the mother/infant dyad and breastmilk leukocyte levels. This could be used as a diagnostic tool for assessment of the health status of the lactating breast as well as the breastfeeding mother and infant.

17.
Stem Cells ; 30(10): 2164-74, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22865647

ABSTRACT

The mammary gland undergoes significant remodeling during pregnancy and lactation, which is fuelled by controlled mammary stem cell (MaSC) proliferation. The scarcity of human lactating breast tissue specimens and the low numbers and quiescent state of MaSCs in the resting breast have hindered understanding of both normal MaSC dynamics and the molecular determinants that drive their aberrant self-renewal in breast cancer. Here, we demonstrate that human breastmilk contains stem cells (hBSCs) with multilineage properties. Breastmilk cells from different donors displayed variable expression of pluripotency genes normally found in human embryonic stem cells (hESCs). These genes included the transcription factors (TFs) OCT4, SOX2, NANOG, known to constitute the core self-renewal circuitry of hESCs. When cultured in the presence of mouse embryonic feeder fibroblasts, a population of hBSCs exhibited an encapsulated ESC-like colony morphology and phenotype and could be passaged in secondary and tertiary clonogenic cultures. While self-renewal TFs were found silenced in the normal resting epithelium, they were dramatically upregulated in breastmilk cells cultured in 3D spheroid conditions. Furthermore, hBSCs differentiated in vitro into cell lineages from all three germ layers. These findings provide evidence that breastmilk represents a novel and noninvasive source of patient-specific stem cells with multilineage potential and establish a method for expansion of these cells in culture. They also highlight the potential of these cells to be used as novel models to understand adult stem cell plasticity and breast cancer, with potential use in bioengineering and tissue regeneration.


Subject(s)
Cell Lineage/physiology , Milk, Human/cytology , Pluripotent Stem Cells/cytology , Adult , Biomarkers/metabolism , Cell Differentiation , Cell Proliferation , Cells, Cultured , Feeder Cells , Female , Fibroblasts , Gene Expression , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Humans , Lactation , Nanog Homeobox Protein , Octamer Transcription Factor-3/genetics , Octamer Transcription Factor-3/metabolism , Pluripotent Stem Cells/metabolism , SOXB1 Transcription Factors/genetics , SOXB1 Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...