Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Immunol ; 209(11): 2227-2238, 2022 12 01.
Article in English | MEDLINE | ID: mdl-36426975

ABSTRACT

Colorectal cancer is one of the most common cancers and a major cause of mortality. Proinflammatory and antitumor immune responses play critical roles in colitis-associated colon cancer. CCL17, a chemokine of the C-C family and ligand for CCR4, is expressed by intestinal dendritic cells in the steady state and is upregulated during colitis in mouse models and inflammatory bowel disease patients. In this study, we investigated the expression pattern and functional relevance of CCL17 for colitis-associated colon tumor development using CCL17-enhanced GFP-knockin mice. CCL17 was highly expressed by dendritic cells but also upregulated in macrophages and intermediary monocytes in colon tumors induced by exposure to azoxymethane and dextran sodium sulfate. Despite a similar degree of inflammation in the colon, CCL17-deficient mice developed fewer tumors than did CCL17-competent mice. This protective effect was abrogated by cohousing, indicating a dependency on the microbiota. Changes in microbiota diversity and composition were detected in separately housed CCL17-deficient mice, and these mice were more susceptible to azoxymethane-induced early apoptosis in the colon affecting tumor initiation. Immune cell infiltration in colitis-induced colon tumors was not affected by the lack of CCL17. Taken together, our results indicate that CCL17 promotes colitis-associated tumorigenesis by influencing the composition of the intestinal microbiome and reducing apoptosis during tumor initiation.


Subject(s)
Colitis , Colonic Neoplasms , Gastrointestinal Microbiome , Mice , Animals , Carcinogenesis , Cell Transformation, Neoplastic , Azoxymethane/toxicity , Colonic Neoplasms/pathology , Chemokine CCL17
2.
Nat Immunol ; 23(8): 1208-1221, 2022 08.
Article in English | MEDLINE | ID: mdl-35879451

ABSTRACT

T cell antigen-receptor (TCR) signaling controls the development, activation and survival of T cells by involving several layers and numerous mechanisms of gene regulation. N6-methyladenosine (m6A) is the most prevalent messenger RNA modification affecting splicing, translation and stability of transcripts. In the present study, we describe the Wtap protein as essential for m6A methyltransferase complex function and reveal its crucial role in TCR signaling in mouse T cells. Wtap and m6A methyltransferase functions were required for the differentiation of thymocytes, control of activation-induced death of peripheral T cells and prevention of colitis by enabling gut RORγt+ regulatory T cell function. Transcriptome and epitranscriptomic analyses reveal that m6A modification destabilizes Orai1 and Ripk1 mRNAs. Lack of post-transcriptional repression of the encoded proteins correlated with increased store-operated calcium entry activity and diminished survival of T cells with conditional genetic inactivation of Wtap. These findings uncover how m6A modification impacts on TCR signal transduction and determines activation and survival of T cells.


Subject(s)
Cell Cycle Proteins , Methyltransferases , Adenosine/analogs & derivatives , Animals , Cell Cycle Proteins/metabolism , Methylation , Methyltransferases/genetics , Mice , RNA Splicing Factors/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Signal Transduction
3.
World J Gastrointest Pathophysiol ; 12(6): 115-133, 2021 Nov 22.
Article in English | MEDLINE | ID: mdl-34877026

ABSTRACT

BACKGROUND: Acute pancreatitis (AP) is an inflammatory disease, which presents with epigastric pain and is clinically diagnosed by amylase and lipase three times the upper limit of normal. The 2012 Atlanta classification stratifies the severity of AP as one of three risk categories namely, mild AP (MAP), moderately severe AP (MSAP), and severe AP (SAP). Challenges in stratifying AP upon diagnosis suggest that a better understanding of the underlying complex pathophysiology may be beneficial. AIM: To identify the role of the chemokine receptor 8 (CCR8), expressed by T-helper type-2 Lymphocytes and peritoneal macrophages, and its possible association to Interleukin (IL)-6 and AP stratification. METHODS: This study was a prospective case-control study. A total of 40 patients were recruited from the Chris Hani Baragwanath Academic Hospital and the Charlotte Maxeke Johannesburg Academic Hospital. Bioassays were performed on 29 patients (14 MAP, 11 MSAP, and 4 SAP) and 6 healthy controls as part of a preliminary study. A total of 12 mL of blood samples were collected at Day (D) 1, 3, 5, and 7 post epigastric pain. Using multiplex immunoassay panels, real-time polymerase chain reaction (qRT-PCR) arrays, and multicolour flow cytometry analysis, immune response-related proteins, genes, and cells were profiled respectively. GraphPad Prism™ software and fold change (FC) analysis was used to determine differences between the groups. P<0.05 was considered significant. RESULTS: The concentration of IL-6 was significantly different at D3 post epigastric pain in both the MAP group and MSAP group with P = 0.001 and P = 0.013 respectively, in a multiplex assay. When a FC of 2 was applied to identify differentially expressed genes using RT2 Profiler, CCR8 was shown to increase steadily with disease severity from MAP (1.33), MSAP (38.28) to SAP (1172.45) median FC. Further verification studies using RT-PCR showed fold change increases of CCR8 in MSAP and SAP ranging from 1000 to 1000000 times when represented as Log10, compared to healthy control respectively at D3. The findings also showed differing lymphocyte and monocyte cell frequency between the groups. With monocyte population frequency as high as 70% in MSAP at D3. CONCLUSION: The higher levels of CCR8 and IL-6 in the severe patients and immune cell differences compared to MAP and controls provide an avenue for exploring AP stratification to improve management.

4.
Front Oncol ; 9: 1001, 2019.
Article in English | MEDLINE | ID: mdl-31681563

ABSTRACT

Colorectal cancer (CRC) is one of the most common cancers and a major cause of mortality. Mice with truncating Apc germline mutations have been used as a standard model of CRC, but most of the Apc-mutated lines develop multiple tumors in the proximal small intestine and rarely in the colon precluding detailed analysis of colon tumor microenvironment. Our aim was to develop a model with higher resemblance to human CRC and to characterize tumor infiltrating immune cells in spontaneously developing colon tumors compared to small intestinal tumors. Therefore, the Apc 1638N/+ line was treated repeatedly with azoxymethane (AOM) and 90% colon tumor incidence and 4 to 5 colon tumors per mouse were achieved. Of note, AOM treatment specifically increased the tumor burden in the colon, but not in the small intestine. Histological grading and WNT-signaling activity did not differ significantly between small intestinal and colon tumors with some lesions progressing to invasive adenocarcinoma in both locations. However, characterization of the intratumoral myeloid cell compartment revealed a massive infiltration of colon tumors with neutrophils - 6-fold higher than in small intestinal tumors. Moreover, CCL17-expressing macrophages and dendritic cells accumulated in the tumors indicating the establishment of a tumor-promoting immunosuppressive environment. Thus, Apc 1638N/+ mice treated with AOM are a suitable and straightforward model to study the influence of immune cells and chemokines on colon carcinogenesis.

5.
PLoS One ; 14(7): e0218332, 2019.
Article in English | MEDLINE | ID: mdl-31276514

ABSTRACT

Clinical observations in inflammatory bowel disease patients and experimental studies in rodents suggest that iron in the intestinal lumen derived from iron-rich food or oral iron supplementation could exacerbate inflammation and that iron depletion from the diet could be protective. To test the hypothesis that dietary iron reduction is protective against colitis development, the impact of iron reduction in the diet below 10 mg/kg on the course of CD4+ CD62L+ T cell transfer colitis was investigated in adult C57BL/6 mice. Weight loss as well as clinical and histological signs of inflammation were comparable between mice pretreated with semisynthetic diets with either < 10mg/kg iron content or supplemented with 180 mg/kg iron in the form of ferrous sulfate or hemin. Accumulation and activation of Ly6Chigh monocytes, changes in dendritic cell subset composition and induction of proinflammatory Th1/Th17 cells in the inflamed colon were not affected by the iron content of the diets. Thus, dietary iron reduction did not protect adult mice against severe intestinal inflammation in T cell transfer induced colitis.


Subject(s)
Dietary Supplements , Food, Formulated , Inflammatory Bowel Diseases , Iron/pharmacology , Th1 Cells , Th17 Cells , Adoptive Transfer , Animals , Colon/immunology , Colon/pathology , Dendritic Cells/immunology , Dendritic Cells/pathology , Disease Models, Animal , Inflammatory Bowel Diseases/diet therapy , Inflammatory Bowel Diseases/immunology , Inflammatory Bowel Diseases/pathology , Mice , Mice, Knockout , Monocytes/immunology , Monocytes/pathology , Th1 Cells/immunology , Th1 Cells/pathology , Th1 Cells/transplantation , Th17 Cells/immunology , Th17 Cells/pathology , Th17 Cells/transplantation
6.
Viruses ; 10(4)2018 03 23.
Article in English | MEDLINE | ID: mdl-29570694

ABSTRACT

Pattern recognition receptors (PRRs) sensing commensal microorganisms in the intestine induce tightly controlled tonic signaling in the intestinal mucosa, which is required to maintain intestinal barrier integrity and immune homeostasis. At the same time, PRR signaling pathways rapidly trigger the innate immune defense against invasive pathogens in the intestine. Intestinal epithelial cells and mononuclear phagocytes in the intestine and the gut-associated lymphoid tissues are critically involved in sensing components of the microbiome and regulating immune responses in the intestine to sustain immune tolerance against harmless antigens and to prevent inflammation. These processes have been mostly investigated in the context of the bacterial components of the microbiome so far. The impact of viruses residing in the intestine and the virus sensors, which are activated by these enteric viruses, on intestinal homeostasis and inflammation is just beginning to be unraveled. In this review, we will summarize recent findings indicating an important role of the enteric virome for intestinal homeostasis as well as pathology when the immune system fails to control the enteric virome. We will provide an overview of the virus sensors and signaling pathways, operative in the intestine and the mononuclear phagocyte subsets, which can sense viruses and shape the intestinal immune response. We will discuss how these might interact with resident enteric viruses directly or in context with the bacterial microbiome to affect intestinal homeostasis.


Subject(s)
Gastrointestinal Microbiome/immunology , Homeostasis , Host-Pathogen Interactions/immunology , Immunity, Mucosal , Intestines/immunology , Intestines/virology , Animals , Biomarkers , Disease Susceptibility , Humans , Immunity, Innate , Inflammation , Intestinal Mucosa/metabolism , Phagocytes/immunology , Phagocytes/metabolism , Receptors, Pattern Recognition/genetics , Receptors, Pattern Recognition/metabolism , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...