Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 13(1): 7771, 2023 May 12.
Article in English | MEDLINE | ID: mdl-37173381

ABSTRACT

The combination of different polymers in the form of blended plastics has been used in the plastic industry for a long time. Nevertheless, analyses of microplastics (MPs) have been mainly limited to the study of particles made of single-type polymers. Accordingly, two members of the Polyolefins (POs) family, i.e., Polypropylene (PP) and Low-density Polyethylene (LDPE) are blended and extensively studied in this work due to their applications in industry as well as abundance in the environment. It is shown that 2-D Raman mapping only provides information about the surface of blended MPs (B-MPs). While complimentary 3-D volume analysis is needed to fully understand the presence of various polymers in such complex samples. Therefore, 3-D Raman mapping is applied to visualize the morphology of the distribution of polymers within the B-MPs together with the quantitative estimation of their concentrations. A parameter defined as the concentration estimate error (CEE) evaluates the precision of the quantitative analysis. Furthermore, the impact of four excitation wavelengths 405, 532, 633, and 785 nm is investigated on the obtained results. Finally, the application of a line-shaped laser beam profile (line-focus) is introduced for reducing the measurement time from 56 to 2 h.

2.
Anal Methods ; 14(39): 3840-3849, 2022 10 13.
Article in English | MEDLINE | ID: mdl-36169110

ABSTRACT

Size and concentration are two important parameters for the analysis of microplastics (MPs) in water. The analytical tools reported so far extract this information in a single-particle analysis mode, dramatically increasing the analysis time. Here, we present a combination of multi-angle static light scattering technique, called "Goniophotometry", with chemometric multivariate data processing for the batch analysis of size and concentration of MPs in water. Nine different sizes of polystyrene (PS) MPs with diameters between 500 nm and 20 µm are investigated in two different scenarios with uniform (monodisperse) and non-uniform (polydisperse) size distribution of MPs, respectively. It is shown that Principal Component Analysis (PCA) can reveal the existing relationship between the scattering data of mono- and polydisperse samples according to the size distribution of MPs in mixtures. Therefore, a Linear Discriminant Analysis (LDA) model is constructed based on the PCA of scattering data of PS monodisperse samples and is subsequently employed to classify the size of MPs not only in unknown mono- and polydisperse PS samples, but also for other types of MPs such as Polyethylene (PE) and Polymethylmethacrylate (PMMA). When the size of MPs is classified, their concentration is measured using a simple linear fit. Finally, a Linear Least Square (LLS) model is used to evaluate the reproducibility of the measurements.


Subject(s)
Microplastics , Plastics , Chemometrics , Polyethylene , Polymethyl Methacrylate , Polystyrenes , Reproducibility of Results , Water
3.
Sci Rep ; 11(1): 21338, 2021 10 29.
Article in English | MEDLINE | ID: mdl-34716369

ABSTRACT

The positive impact of daylight on various forms of life is well understood. The daylight conditions a person experiences inside a building strongly depend on the character of the glazing. Contemporary windows maximize the transmission of visible daylight. In post-medieval times glassmakers were confronted with less pure materials. Driven by the Reformation and Counter-Reformation they were at the same time challenged by the demand for increased daylight. Luckily, technological evolutions allowed the production of thinner windows. It is currently an open question if glassmakers in the (Southern) Low Countries during the booming economic period from the fifteenth to seventeenth century made use of the interplay between material and fabrication properties to bring light into the darkness. Therefore, this paper links the impact of glass purity and production technique to light transmission for a well-diagnosed group of excavated glass window pieces from the castle of Middelburg-in-Flanders and a set of roundels, all dating back to between the fifteenth and seventeenth centuries and explores what factors have influenced this technological improvement. A non-destructive approach making use of UV-vis-NIR absorption spectroscopy unveiled that the more recent material is less pure compared to the older dated material but that light transmission was maximized due to the applied production technique.

4.
Sci Rep ; 6: 37726, 2016 11 24.
Article in English | MEDLINE | ID: mdl-27883056

ABSTRACT

Civilized societies should safeguard their heritage as it plays an important role in community building. Moreover, past technologies often inspire new technology. Authenticity is besides conservation and restoration a key aspect in preserving our past, for example in museums when exposing showpieces. The classification of being authentic relies on an interdisciplinary approach integrating art historical and archaeological research complemented with applied research. In recent decades analytical dating tools are based on determining the raw materials used. However, the traditional applied non-portable, chemical techniques are destructive and time-consuming. Since museums oftentimes only consent to research actions which are completely non-destructive, optical spectroscopy might offer a solution. As a case-study we apply this technique on two stained glass panels for which the 14th century dating is nowadays questioned. With this research we were able to identify how simultaneous mapping of spectral signatures measured with a low cost optical spectrum analyser unveils information regarding the production period. The significance of this research extends beyond the re-dating of these panels to the 19th century as it provides an instant tool enabling immediate answering authenticity questions during the conservation process of stained glass, thereby providing the necessary data for solving deontological questions about heritage preservation.

SELECTION OF CITATIONS
SEARCH DETAIL
...