Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Hum Gene Ther ; 17(5): 487-99, 2006 May.
Article in English | MEDLINE | ID: mdl-16716106

ABSTRACT

Human lipoprotein lipase (hLPL) deficiency, for which there currently exists no adequate treatment, leads to excessive plasma triglycerides (TGs), recurrent abdominal pain, and life-threatening pancreatitis. We have shown that a single intramuscular administration of adeno-associated virus (AAV) serotype 1 vector, encoding the human LPL(S447X) variant, results in complete, long-term normalization of dyslipidemia in LPL(/) mice. As a prelude to gene therapy for human LPL deficiency, we tested the efficacy of AAV1-LPL(S447X) in LPL(/) cats, which demonstrate hypertriglyceridemia (plasma TGs, >10,000 mg/dl) and clinical symptoms similar to LPL deficiency in humans, including pancreatitis. Male LPL(/) cats were injected intramuscularly with saline or AAV1-LPL(S447X) (1 x 10(11)-1.7 x 10(12) genome copies [GC]/kg), combined with oral doses of cyclophosphamide (0-200 mg/m(2) per week) to inhibit an immune response against hLPL. Within 3-7 days after administration of >or=5 x 10(11) GC of AAV1-LPL(S447X) per kilogram, the visible plasma lipemia was completely resolved and plasma TG levels were reduced by >99% to normal levels (10-20 mg/dl); intermediate efficacy (95% reduction) was achieved with 1 x 10(11) GC/kg. Injection in two sites, greatly limiting the amount of transduced muscle, was sufficient to completely correct the dyslipidemia. By varying the dose per site, linear LPL expression was demonstrated over a wide range of local doses (4 x 10(10)-1 x 10(12) GC/site). However, efficacy was transient, because of an anti-hLPL immune response blunting LPL expression. The level and duration of efficacy were significantly improved with cyclophosphamide immunosuppression. We conclude that AAV1-mediated delivery of LPL(S447X) in muscle is an effective means to correct the hypertriglyceridemia associated with feline LPL deficiency.


Subject(s)
Dependovirus/genetics , Genetic Therapy/methods , Hypertriglyceridemia/therapy , Lipoprotein Lipase/deficiency , Animals , Antibody Formation , Cats , Cyclophosphamide/therapeutic use , Feasibility Studies , Gene Transfer Techniques , Hypertriglyceridemia/genetics , Immunosuppressive Agents/therapeutic use , Lipids/blood , Lipoprotein Lipase/blood , Lipoprotein Lipase/genetics , Lipoprotein Lipase/immunology , Male , Muscle, Skeletal/metabolism , Point Mutation , Transgenes/immunology , Triglycerides/blood
2.
Hum Gene Ther ; 16(11): 1276-86, 2005 Nov.
Article in English | MEDLINE | ID: mdl-16259561

ABSTRACT

Lipoprotein lipase (LPL) deficiency causes hypertriglyceridemia and recurrent, potentially life-threatening pancreatitis. There currently is no adequate treatment for this disease. Previously, we showed that intramuscular administration of an adeno-associated virus serotype 1 (AAV1) vector encoding the human LPL(S447X) variant cDNA (AAV1-LPL(S447X)) normalized the dyslipidemia of LPL-/- mice for more than 1 year. In preparation for a clinical trial, we evaluated the safety and biodistribution of AAV1-LPL(S447X) in wild-type mice and fully characterized six LPL-deficient patients. Toxicological analysis in mice showed that intramuscular administration was well tolerated. Acute inflammatory response markers were transiently increased, and anti- AAV1 antibodies were generated. Histological analyses indicated a dose-dependent reversible spleen hyperplasia, and myositis at the injection sites. Biodistribution data showed short-term vector leakage from injection sites into the circulation, followed by liver-mediated clearance. Persistence of vector DNA was limited to the injected muscle and draining lymph nodes, and spread to reproductive organs was limited. Characterization of LPL-deficient patients showed that all patients presented with hypertriglyceridemia and recurrent pancreatitis. LPL catalytic activity was absent, but LPL protein levels were 20-100% of normal. Myoblasts derived from skeletal muscle biopsies of these patients were efficiently transduced by AAV1-LPL(S447X) and secreted active LPL. These data support the initiation of a clinical trial in LPL-deficient patients, for which regulatory approval has been granted.


Subject(s)
Genetic Therapy , Hyperlipoproteinemia Type I/therapy , Lipoprotein Lipase/genetics , Animals , Dependovirus/genetics , Feasibility Studies , Female , Genetic Therapy/adverse effects , Genetic Vectors , Injections, Intramuscular , Lipoprotein Lipase/administration & dosage , Lipoprotein Lipase/pharmacokinetics , Male , Mice , Mice, Inbred C57BL , Tissue Distribution
3.
Hum Gene Ther ; 15(9): 906-19, 2004 Sep.
Article in English | MEDLINE | ID: mdl-15353045

ABSTRACT

Human lipoprotein lipase (LPL) deficiency causes profound hypertriglyceridemia and life-threatening pancreatitis. We recently developed an adult murine model for LPL deficiency: LPL -/- mice display grossly elevated plasma triglyceride (TG) levels (>200-fold) and very low high-density lipoprotein cholesterol (HDL-C < 10% of normal). We used this animal model to test the efficacy of adeno-associated virus-mediated expression of hLPL(S447X) (AAV1-LPL(S447X)) in muscle for the treatment of LPL deficiency. Intramuscular administration of AAV1-LPL(S447X) resulted in dose-dependent expression of hLPL protein and LPL activity (up to 33% of normal murine levels) in postheparin plasma. Remarkably, visible hyperlipidemia was resolved within 1 week; plasma TG was reduced to near-normal levels (from 99.0 to 1.8 mmol/L), and plasma HDL-C was increased 6-fold (from 0.2 to 1.1 mmol/L). At 8 months after administration of AAV1-LPL(S447X), an intravenous lipid challenge showed efficient, near-normal clearance of plasma TG. Histologic analyses of injected muscle further indicated that abnormal muscle morphology observed in LPL -/- mice was reversed after treatment. Expression of therapeutic levels of LPL(S447X), and the subsequent beneficial effect on plasma lipid levels, has lasted for more than 1 year. We therefore conclude that AAV1-mediated transfer of LPL(S447X) into murine skeletal muscle results in long-term near-correction of dyslipidemia associated with LPL deficiency.


Subject(s)
Dependovirus/genetics , Genetic Therapy , Hyperlipoproteinemia Type I/therapy , Lipoprotein Lipase/genetics , Mutation , Animals , Dependovirus/metabolism , Female , Gene Transfer Techniques , Genetic Vectors , Hyperlipidemias/metabolism , Hyperlipidemias/therapy , Hyperlipoproteinemia Type I/metabolism , Injections, Intramuscular , Lipid Metabolism , Lipids/blood , Male , Mice , Muscles/cytology
SELECTION OF CITATIONS
SEARCH DETAIL
...