Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Membranes (Basel) ; 13(2)2023 Jan 17.
Article in English | MEDLINE | ID: mdl-36837623

ABSTRACT

In this study, we aim to adapt a solid oxide cell (SOC) to a membrane reactor for general chemical reactions to leverage the readily available multichannel design of the SOC. As a proof-of-concept, the developed reactor is tested for syngas production by the partial oxidation of methane using oxygen ion transport membranes (ITMs) to achieve oxygen separation and permeation. A La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) membrane and Ni/MgAl2O4 catalyst are used for oxygen permeation and the partial oxidation of methane, respectively. ANSYS Fluent is used to assess the reactor performance with the help of computational fluid dynamics (CFD) simulations. The membrane permeation process is chemical kinetics achieved by user-defined functions (UDFs). The simulation results show that the oxygen permeation rate depends on the temperature, air, and fuel flow rates, as well as the occurrence of reactions, which is consistent with the results reported in the literature. During isothermal operation, the product composition and the species distribution in the reactor change with the methane flow rate. When the molar ratio of fed methane to permeated oxygen is 2.0, the methane conversion and CO selectivity reach a high level, namely 95.8% and 97.2%, respectively, which agrees well with the experimental data reported in the literature. Compared to the isothermal operation, the methane conversion of the adiabatic operation is close to 100%. Still, the CO selectivity only reaches 61.6% due to the hot spot formation of 1491 K in the reactor. To reduce the temperature rise in the adiabatic operation, reducing the methane flow rate is an approach, but the price is that the productivity of syngas is sacrificed as well. In conclusion, the adaption of the SOC to a membrane reactor is achieved, and other reaction applications can be explored in the same way.

2.
Membranes (Basel) ; 12(10)2022 Oct 21.
Article in English | MEDLINE | ID: mdl-36295783

ABSTRACT

Two-dimensional (2D) MXene materials have recently been the focus of membrane research due to their unique properties, such as their single-atomic-layer thickness, flexibility, molecular filtration abilities and microstructural similarities with graphene, which is currently the most efficient precursor material for gas separation applications. In addition, the potential to process nanoscale channels has motivated investigations of parameters which can improve membrane permeability and selectivity. Interlayer spacing and defects, which are still challenging to control, are among the most crucial parameters for membrane performance. Herein, the effect of heat treatment on the d-spacing of MXene nanosheets and the surface functionalization of nanolayers was shown regarding its impact on the gas diffusion mechanism. The distance of the layers was reduced by a factor of over 10 from 0.345 nm to 0.024 nm, the defects were reduced, and the surface functionalization was maintained upon treatment of the Ti3C2 membrane at 500 °C under an Ar/H2 atmosphere as compared to 80 °C under vacuum. This led to a change from Knudsen diffusion to molecular sieving, as demonstrated by single-gas permeation tests at room temperature. Overall, this work shows a simple and promising way to improve H2/CO2 selectivity via temperature treatment under a controlled atmosphere.

3.
Membranes (Basel) ; 12(6)2022 Jun 13.
Article in English | MEDLINE | ID: mdl-35736321

ABSTRACT

Oxygen transport membranes can enable a wide range of efficient energy and industrial applications. One goal of development is to maximize the performance by the improvement of the material, microstructural properties and operational conditions. However, the complexity of the transportation processes taking place in such commonly asymmetric membranes impedes the identification of the parameters to improve them. In this work, we present a sensitivity study that allows identification of these parameters. It is based on a 1D transport model that includes surface exchange, ionic and electronic transport inside the dense membrane, as well as binary diffusion, Knudsen diffusion and viscous flux inside the porous support. A support limitation factor is defined and its dependency on the membrane conductivity is shown. For materials with very high ambipolar conductivity the transport is limited by the porous support (in particular the pore tortuosity), whereas for materials with low ambipolar conductivity the transport is limited by the dense membrane. Moreover, the influence of total pressure and related oxygen partial pressures in the gas phase at the membrane's surfaces was revealed to be significant, which has been neglected so far in permeation test setups reported in the literature. In addition, the accuracy of each parameter's experimental determination is discussed. The model is well-suited to guiding experimentalists in developing high-performance gas separation membranes.

4.
Beilstein J Nanotechnol ; 12: 1380-1391, 2021.
Article in English | MEDLINE | ID: mdl-34987951

ABSTRACT

In this study, a dual phase composite (CSO-FC2O) consisting of 60 vol % Ce0.8Sm0.2O1.9 as oxygen-conductive phase and 40 vol % FeCo2O4 as electron-conductive phase was synthesized. TEM measurements showed a relatively pure dual-phase material with only minor amounts of a tertiary (Sm,Ce)(Fe,Co)O3 perovskite phase and isolated residues of a rock salt phase at the grain boundaries. The obtained material was used as a model to demonstrate that a combination of polarization relaxation measurements and Kelvin probe force microscopy (KPFM)-based mapping of the Volta potential before and after the end of polarization can be used to determine the chemical diffusion coefficient of the ceria component of the composite. The KPFM measurements were performed at room temperature and show diffusion coefficients in the range of 3 × 10-13 cm2·s-1, which is comparable to values measured for single-phase Gd-doped ceria thin films using the same method.

5.
iScience ; 19: 955-964, 2019 Sep 27.
Article in English | MEDLINE | ID: mdl-31518903

ABSTRACT

Coupling of two oxygen-involved reactions at the opposite sides of an oxygen transport membrane (OTM) has demonstrated great potential for process intensification. However, the current cobalt- or iron-containing OTMs suffer from poor reduction tolerance, which are incompetent for membrane reactor working in low oxygen partial pressure (pO2). Here, we report for the first time a both Co- and Fe-free SrMg0.15Zr0.05Ti0.8O3-δ (SMZ-Ti) membrane that exhibits both superior reduction tolerance for 100 h in 20 vol.% H2/Ar and environment-induced mixed conductivity due to the modest reduction of Ti4+ to Ti3+ in low pO2. We further demonstrate that SMZ-Ti is ideally suited for membrane reactor where water splitting is coupled with methane reforming at the opposite sides to simultaneously obtain hydrogen and synthesis gas. These results extend the scope of mixed conducting materials to include titanates and open up new avenues for the design of chemically stable membrane materials for high-performance membrane reactors.

SELECTION OF CITATIONS
SEARCH DETAIL
...