Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Microbiol ; 12: 581430, 2021.
Article in English | MEDLINE | ID: mdl-33776948

ABSTRACT

Mountain areas harbor large climatic and geographic gradients and form numerous habitats that promote high overall biodiversity. Compared to macroorganisms, knowledge about drivers of biodiversity and distribution of soil bacteria in mountain regions is still scarce but a prerequisite for conservation of bacterial functions in soils. An important question is, whether soil bacterial communities with similar structures share environmental preferences. Using metabarcoding of the 16S rRNA gene marker, we assessed soil bacterial communities at 255 sites of a regular grid covering the mountainous landscape of Switzerland, which is characterized by close location of biogeographic regions that harbor different land-use types. Distribution of bacterial communities was mainly shaped by environmental selection, as revealed by 47.9% variance explained by environmental factors, with pH (29%) being most important. Little additional variance was explained by biogeographic regions (2.8%) and land-use types (3.3%). Cluster analysis of bacterial community structures revealed six bacterial community types (BCTs), which were associated to several biogeographic regions and land-use types but overall differed mainly in their preference for soil pH. BCT I and II occurred at neutral pH, showed distinct preferences for biogeographic regions mainly differing in elevation and nutrient availability. BCT III and IV differed only in their preferred soil pH. BCT VI occurred in most acidic soils (pH 3.6) and almost exclusively at forest sites. BCT V occurred in soils with a mean pH of 4 and differed from BCT VI in preference for lower values of organic C, total nitrogen and their ratio. Indicator species and bipartite network analyses revealed 3,998 OTUs associating to different levels of environmental factors and BCTs. Taxonomic classification revealed opposing associations of taxa deriving from the same phyla. The results revealed that pH, land-use type, biogeographic region, and nutrient availability were the main factors shaping bacterial communities across Switzerland. Indicator species and bipartite network analyses revealed environmental preferences of bacterial taxa. Combining information of environmental factors and BCTs yielded increased resolution of the factors shaping soil bacterial communities and provided an improved biodiversity framework. OTUs exclusively associated to BCTs provide a novel resource to identify unassessed environmental drivers.

2.
PeerJ ; 7: e6347, 2019.
Article in English | MEDLINE | ID: mdl-30755829

ABSTRACT

Nitrogen (N) deposition is a major threat to biodiversity in many habitats. The recent introduction of cleaner technologies in Switzerland has led to a reduction in the emissions of nitrogen oxides, with a consequent decrease in N deposition. We examined different drivers of plant community change, that is, N deposition, climate warming, and land-use change, in Swiss mountain hay meadows, using data from the Swiss biodiversity monitoring program. We compared indicator values of species that disappeared from or colonized a site (species turnover) with the indicator values of randomly chosen species from the same site. While oligotrophic plant species were more likely to colonize, compared to random expectation, we found only weak shifts in plant community composition. In particular, the average nutrient value of plant communities remained stable over time (2003-2017). We found the largest deviations from random expectation in the nutrient values of colonizing species, suggesting that N deposition or other factors that change the nutrient content of soils were important drivers of the species composition change over the last 15 years in Swiss mountain hay meadows. In addition, we observed an overall replacement of species with lower indicator values for temperature with species with higher values. Apparently, the community effects of the replacement of eutrophic species with oligotrophic species was outweighed by climate warming. Our results add to the increasing evidence that plant communities in changing environments may be relatively stable regarding average species richness or average indicator values, but that this apparent stability is often accompanied by a marked turnover of species.

3.
J Invertebr Pathol ; 160: 18-25, 2019 01.
Article in English | MEDLINE | ID: mdl-30500362

ABSTRACT

Terrestrial gastropod molluscs are widely distributed and are well known as pests of many types of plants that are notoriously difficult to control. Many species of nematodes are able to parasitize land snails and slugs, but few of them are lethal to their host. Species and/or populations of mollusc-parasitic nematodes (MPNs) that kill their hosts are promising for biological control purposes. The recent discovery of new nematode species of the genus Phasmarhabditis in Europe and the associations between Alloionema spp. and slugs are expanding the possibilities of using MPNs as control agents. However, very little is known about the distribution and ecology of these species. Using molecular techniques based on qPCR methods for quick identification and quantification of various species of MPN isolated directly from the soil or from infected hosts can assist in providing information on their presence and persistence, as well as the composition of natural assemblages. Here, we developed new primers and probes for five species of the genus Phasmarhabditis and one species of the genus Alloionema. We employed these novel molecular techniques and implemented a published molecular set to detect MPN presence in soil samples coming from natural and agricultural areas in Switzerland. We also developed a method that allows the detection and quantification of Phasmarhabditis hermaphrodita directly from the tissues of their slug host in a laboratory experiment. The new molecular approaches were optimized to a satisfactory limit of detection of the species, with only few cross-amplifications with closely related species in late cycles (>32). Using these tools, we detected MPNs in 7.5% of sampled sites, corresponding to forest areas (P. hermaphrodita and Alloionema appendiculatum) and wheat-oriented agricultural areas (Phasmarhabditis bohemica). Moreover, we confirmed that the method can be used to detect the presence of P. hermaphrodita inside slug hosts, with more detections in the susceptible slug Deroceras larvae compared to the resistant Arion vulgaris. These primers/probe sets provide a novel and quick tool to identify MPNs from soil samples and infected slugs without having to culture and retrieve all nematode life stages, as well as a new tool to unravel the ecology of nematode-slug complexes.


Subject(s)
Nematoda/isolation & purification , Rhabditoidea/isolation & purification , Snails/parasitology , Animals , DNA, Helminth/genetics , DNA, Ribosomal/genetics , Host-Parasite Interactions , Nematoda/genetics , Nematoda/parasitology , Pest Control, Biological , Real-Time Polymerase Chain Reaction , Rhabditoidea/genetics , Rhabditoidea/parasitology , Soil/parasitology , Switzerland
SELECTION OF CITATIONS
SEARCH DETAIL
...