Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
Add more filters










Publication year range
1.
PLoS One ; 18(2): e0281484, 2023.
Article in English | MEDLINE | ID: mdl-36745639

ABSTRACT

Maize lethal necrosis is a destructive virus disease of maize caused by maize chlorotic mottle virus (MCMV) in combination with a virus in the family Potyviridae. Emergence of MLN is typically associated with the introduction of MCMV or its vectors and understanding its spread through seed is critical for disease management. Previous studies suggest that although MCMV is detected on seed, the seed transmission rate of this virus is low. However, mechanisms influencing its transmission are poorly understood. Elucidating these mechanisms is crucial for informing strategies to prevent spread on contaminated seed. In this study, we evaluated the rate of MCMV seed transmission using seed collected from plants that were artificially inoculated with MCMV isolates from Hawaii and Kenya. Grow-out tests indicated that MCMV transmission through seed was rare, with a rate of 0.004% among the more than 85,000 seed evaluated, despite detection of MCMV at high levels in the seed lots. To understand factors that limit transmission from seed, MCMV distribution in seed tissues was examined using serology and immunolocalization. The virus was present at high levels in maternal tissues, the pericarp and pedicel, but absent from filial endosperm and embryo seed tissues. The ability to transmit MCMV from seed to uninfected plants was tested to evaluate virus viability. Transmission was negatively associated with both seed maturity and moisture content. Transmission of MCMV from infested seed dried to less than 15% moisture was not detected, suggesting proper handling could be important for minimizing spread of MCMV through seed.


Subject(s)
Plant Diseases , Potyviridae , Tombusviridae , Zea mays , Kenya , Plant Diseases/virology , Zea mays/virology , Hawaii , Seeds/virology
2.
G3 (Bethesda) ; 12(5)2022 05 06.
Article in English | MEDLINE | ID: mdl-35325123

ABSTRACT

Almond [Prunus dulcis (Mill.) D.A. Webb] is an economically important, specialty nut crop grown almost exclusively in the United States. Breeding and improvement efforts worldwide have led to the development of key, productive cultivars, including 'Nonpareil,' which is the most widely grown almond cultivar. Thus far, genomic resources for this species have been limited, and a whole-genome assembly for 'Nonpareil' is not currently available despite its economic importance and use in almond breeding worldwide. We generated a 571X coverage genome sequence using Illumina, PacBio, and optical mapping technologies. Gene prediction revealed 49,321 putative genes using MinION Oxford nanopore and Illumina RNA sequencing, and genome annotation found that 68% of predicted models are associated with at least one biological function. Furthermore, epigenetic signatures of almond, namely DNA cytosine methylation, have been implicated in a variety of phenotypes including self-compatibility, bud dormancy, and development of noninfectious bud failure. In addition to the genome sequence and annotation, this report also provides the complete methylome of several almond tissues, including leaf, flower, endocarp, mesocarp, exocarp, and seed coat. Comparisons between methylation profiles in these tissues revealed differences in genome-wide weighted % methylation and chromosome-level methylation enrichment.


Subject(s)
Prunus dulcis , Epigenome , Flowers/genetics , Genome, Plant , Plant Breeding , Prunus dulcis/genetics
3.
Genomics ; 113(3): 1416-1427, 2021 05.
Article in English | MEDLINE | ID: mdl-33722656

ABSTRACT

Entodinium caudatum is an anaerobic binucleated ciliate representing the most dominant protozoal species in the rumen. However, its biological features are largely unknown due to the inability to establish an axenic culture. In this study, we primally sequenced its macronucleus (MAC) genome to aid the understanding of its metabolism, physiology, ecology. We isolated the MAC of E. caudatum strain MZG-1 and sequenced the MAC genome using Illumina MiSeq, MinION, and PacBio RSII systems. De novo assembly of the MiSeq sequence reads followed with subsequent scaffolding with MinION and PacBio reads resulted in a draft MAC genome about 117 Mbp. A large number of carbohydrate-active enzymes were likely acquired through horizontal gene transfer. About 8.74% of the E. caudatum predicted proteome was predicted as proteases. The MAC genome of E. caudatum will help better understand its important roles in rumen carbohydrate metabolism, and interaction with other members of the rumen microbiome.


Subject(s)
Ciliophora , Rumen , Anaerobiosis , Animals , Carbohydrate Metabolism , Ciliophora/genetics , Ciliophora/metabolism , Rumen/metabolism , Sequence Analysis, DNA
4.
Plants (Basel) ; 9(10)2020 Sep 24.
Article in English | MEDLINE | ID: mdl-32987687

ABSTRACT

Rubber dandelion (Taraxacum kok-saghyz Rodin; TK) has received attention for its natural rubber content as a strategic biomaterial, and a promising, sustainable, and renewable alternative to synthetic rubber from fossil carbon sources. Extensive research on the domestication and rubber content of TK has demonstrated TK's potential in industrial applications as a relevant natural rubber and latex-producing alternative crop. However, many aspects of its biology have been neglected in published studies. For example, floral development is still poorly characterized. TK inflorescences were studied by scanning electron microscopy. Nine stages of early inflorescence development are proposed, and floral micromorphology is detailed. Individual flower primordia development starts at the periphery and proceeds centripetally in the newly-formed inflorescence meristem. Floral organogenesis begins in the outermost flowers of the capitulum, with corolla ring and androecium formation. Following, pappus primordium-forming a ring around the base of the corolla tube-and gynoecium are observed. The transition from vegetative to inflorescence meristem was observed 21 days after germination. This description of inflorescence and flower development in TK sheds light on the complex process of flowering, pollination, and reproduction. This study will be useful for genetics, breeding, systematics, and development of agronomical practices for this new rubber-producing crop.

5.
Mol Plant Microbe Interact ; 33(2): 364-375, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31880982

ABSTRACT

We recently reported that the p28 auxiliary replication protein encoded by turnip crinkle virus (TCV) is also responsible for eliciting superinfection exclusion (SIE) against superinfecting TCV. However, it remains unresolved whether the replication function of p28 could be separated from its ability to elicit SIE. Here, we report the identification of two single amino acid mutations that decouple these two functions. Using an Agrobacterium infiltration-based delivery system, we transiently expressed a series of p28 deletion and point mutants, and tested their ability to elicit SIE against a cointroduced TCV replicon. We found that substituting alanine (A) for valine (V) and phenylalanine (F) at p28 positions 181 and 182, respectively, modestly compromised SIE in transiently expressed p28 derivatives. Upon incorporation into TCV replicons, V181A and F182A decoupled TCV replication and SIE diametrically. Although V181A impaired SIE without detectably compromising replication, F182A abolished TCV replication but had no effect on SIE once the replication of the defective replicon was restored through complementation. Both mutations diminished accumulation of p28 protein, suggesting that p28 must reach a concentration threshold in order to elicit a strong SIE. Importantly, the severe reduction of F182A protein levels correlated with a dramatic loss in the number of intracellular p28 foci formed by p28-p28 interactions. Together, these findings not only decouple the replication and SIE functions of p28 but also unveil a concentration dependence for p28 coalescence and SIE elicitation. These data further highlight the role of p28 multimerization in driving the exclusion of secondary TCV infections.


Subject(s)
Carmovirus , Virus Replication , Carmovirus/genetics , Carmovirus/physiology , Sequence Deletion , Virus Replication/genetics
6.
Appl Environ Microbiol ; 85(12)2019 06 15.
Article in English | MEDLINE | ID: mdl-30979840

ABSTRACT

Bacterial Halanaerobium strains become the dominant persisting microbial community member in produced fluids across geographically distinct hydraulically fractured shales. Halanaerobium is believed to be inadvertently introduced into this environment during the drilling and fracturing process and must therefore tolerate large changes in pressure, temperature, and salinity. Here, we used a Halanaerobium strain isolated from a natural gas well in the Utica Point Pleasant formation to investigate metabolic and physiological responses to growth under high-pressure subsurface conditions. Laboratory incubations confirmed the ability of Halanaerobium congolense strain WG8 to grow under pressures representative of deep shale formations (21 to 48 MPa). Under these conditions, broad metabolic and physiological shifts were identified, including higher abundances of proteins associated with the production of extracellular polymeric substances. Confocal laser scanning microscopy indicated that extracellular polymeric substance (EPS) production was associated with greater cell aggregation when biomass was cultured at high pressure. Changes in Halanaerobium central carbon metabolism under the same conditions were inferred from nuclear magnetic resonance (NMR) and gas chromatography measurements, revealing large per-cell increases in production of ethanol, acetate, and propanol and cessation of hydrogen production. These metabolic shifts were associated with carbon flux through 1,2-propanediol in response to slower fluxes of carbon through stage 3 of glycolysis. Together, these results reveal the potential for bioclogging and corrosion (via organic acid fermentation products) associated with persistent Halanaerobium growth in deep, hydraulically fractured shale ecosystems, and offer new insights into cellular mechanisms that enable these strains to dominate deep-shale microbiomes.IMPORTANCE The hydraulic fracturing of deep-shale formations for hydrocarbon recovery accounts for approximately 60% of U.S. natural gas production. Microbial activity associated with this process is generally considered deleterious due to issues associated with sulfide production, microbially induced corrosion, and bioclogging in the subsurface. Here we demonstrate that a representative Halanaerobium species, frequently the dominant microbial taxon in hydraulically fractured shales, responds to pressures characteristic of the deep subsurface by shifting its metabolism to generate more corrosive organic acids and produce more polymeric substances that cause "clumping" of biomass. While the potential for increased corrosion of steel infrastructure and clogging of pores and fractures in the subsurface may significantly impact hydrocarbon recovery, these data also offer new insights for microbial control in these ecosystems.


Subject(s)
Extracellular Polymeric Substance Matrix/metabolism , Firmicutes/metabolism , Hydraulic Fracking , Pressure
7.
Plant Cell Physiol ; 60(5): 1067-1081, 2019 May 01.
Article in English | MEDLINE | ID: mdl-30753610

ABSTRACT

Elongated tomato fruit shape is the result of the action of the fruit shape genes possibly in coordination with the phytohormone auxin. To investigate the possible link between auxin and the fruit shape genes, a series of auxin (2,4-D) treatments were performed on the wild-type and the fruit shape near-isogenic lines (NILs) in Solanum pimpinellifolium accession LA1589 background. Morphological and histological analyses indicated that auxin application approximately 3 weeks before anthesis led to elongated pear-shaped ovaries and fruits, which was mainly attributed to the increase of ovary/fruit proximal end caused by the increase of both cell number and cell size. Fruit shape changes caused by SUN, OVATE and fs8.1 were primarily due to the alterations of cell number along different growth axes. Particularly, SUN caused elongation by extending cell number along the entire proximal-distal axis, whereas OVATE caused fruit elongation in the proximal area, which was most similar to the effect of auxin on ovary shape. Expression analysis of flower buds at different stages in fruit shape NILs indicated that SUN had a stronger impact on the transcriptome than OVATE and fs8.1. The sun NIL differentially expressed genes were enriched in several biological processes, such as lipid metabolism, ion transmembrane and actin cytoskeleton organization. Additionally, SUN also shifted the expression of the auxin-related genes, including those involved in auxin biosynthesis, homeostasis, signal transduction and polar transport, indicating that SUN may regulate ovary/fruit shape through modifying the expression of auxin-related genes very early during the formation of the ovary in the developing flower.


Subject(s)
Fruit/metabolism , Solanum lycopersicum/metabolism , Flowers/drug effects , Flowers/metabolism , Flowers/radiation effects , Fruit/drug effects , Fruit/radiation effects , Gene Expression Regulation, Plant/drug effects , Gene Expression Regulation, Plant/radiation effects , Indoleacetic Acids/pharmacology , Solanum lycopersicum/drug effects , Solanum lycopersicum/radiation effects , Plant Proteins/metabolism
8.
J Virol ; 93(2)2019 01 15.
Article in English | MEDLINE | ID: mdl-30404797

ABSTRACT

Porcine epidemic diarrhea virus (PEDV) causes high mortality in neonatal piglets. The PEDV spike (S) protein contains two intracellular sorting motifs, YxxΦ (tyrosine-based motif YEVF or YEAF) and KVHVQ at the cytoplasmic tail, yet their functions have not been fully elucidated. Some Vero cell-adapted and/or attenuated PEDV variants contain ablations in these two motifs. We hypothesized that these motifs contribute to viral pathogenicity. By transiently expressing PEDV S proteins with mutations in the motifs, we confirmed that the motif KVHVQ is involved in retention of the S proteins in the endoplasmic reticulum (ER)-Golgi intermediate compartment (ERGIC). In addition, we showed that the YxxΦ motif triggers endocytosis of S proteins. These two motifs synergistically regulate the level of S expressed on the cell surface. To investigate their role in viral pathogenicity, we generated three recombinant PEDVs by introducing deletions or a mutation in the two motifs of the infectious clone of PEDV PC22A strain (icPC22A): (i) icΔ10aa (ΔYxxΦEKVHVQ), (ii) icΔ5aa (ΔKVHVQ), and (iii) icYA (Y1378A, to an inactivated motif, AEVF). Infection of Vero cells with icΔ10aa resulted in larger syncytia and more virions, with reduced numbers of S protein projections on the surface compared with icPC22A. Furthermore, we orally inoculated five groups of 5-day-old gnotobiotic piglets with the three mutants, icPC22A, or a mock treatment. Mutant icΔ10aa caused less severe diarrhea rate and significantly milder intestinal lesions than icPC22A, icΔ5aa, and icYA. These data suggest that the deletion of both motifs can reduce the virulence of PEDV in piglets.IMPORTANCE Many coronaviruses (CoVs) possess conserved motifs YxxΦ and/or KxHxx/KKxx in the cytoplasmic tail of the S protein. The KxHxx/KKxx motif has been identified as the ER retrieval signal, but the function of the YxxΦ motif in the intracellular sorting of CoV S proteins remains controversial. In this study, we showed that the YxxΦ of PEDV S protein is an endocytosis signal. Furthermore, using reverse genetics technology, we evaluated its role in PEDV pathogenicity in neonatal piglets. Our results explain one attenuation mechanism of Vero cell-adapted PEDV variants lacking functional YxxΦ and KVHVQ motifs. Knowledge from this study may aid in the design of efficacious live attenuated vaccines against PEDV, as well as other CoVs bearing the same motif in their S protein.


Subject(s)
Porcine epidemic diarrhea virus/pathogenicity , Sequence Deletion , Spike Glycoprotein, Coronavirus/chemistry , Swine Diseases/virology , Amino Acid Motifs , Animals , Chlorocebus aethiops , Endocytosis , Endoplasmic Reticulum/metabolism , Golgi Apparatus/metabolism , Porcine epidemic diarrhea virus/genetics , Spike Glycoprotein, Coronavirus/genetics , Swine , Vero Cells , Virulence
9.
Nat Microbiol ; 4(2): 352-361, 2019 02.
Article in English | MEDLINE | ID: mdl-30510171

ABSTRACT

The deep terrestrial biosphere harbours a substantial fraction of Earth's biomass and remains understudied compared with other ecosystems. Deep biosphere life primarily consists of bacteria and archaea, yet knowledge of their co-occurring viruses is poor. Here, we temporally catalogued viral diversity from five deep terrestrial subsurface locations (hydraulically fractured wells), examined virus-host interaction dynamics and experimentally assessed metabolites from cell lysis to better understand viral roles in this ecosystem. We uncovered high viral diversity, rivalling that of peatland soil ecosystems, despite low host diversity. Many viral operational taxonomic units were predicted to infect Halanaerobium, the dominant microorganism in these ecosystems. Examination of clustered regularly interspaced short palindromic repeats-CRISPR-associated proteins (CRISPR-Cas) spacers elucidated lineage-specific virus-host dynamics suggesting active in situ viral predation of Halanaerobium. These dynamics indicate repeated viral encounters and changing viral host range across temporally and geographically distinct shale formations. Laboratory experiments showed that prophage-induced Halanaerobium lysis releases intracellular metabolites that can sustain key fermentative metabolisms, supporting the persistence of microorganisms in this ecosystem. Together, these findings suggest that diverse and active viral populations play critical roles in driving strain-level microbial community development and resource turnover within this deep terrestrial subsurface ecosystem.


Subject(s)
Bacteriophages/physiology , Firmicutes/growth & development , Firmicutes/virology , Microbial Consortia , Oil and Gas Fields/microbiology , Oil and Gas Fields/virology , Bacteriophages/classification , Bacteriophages/genetics , Biodiversity , Clustered Regularly Interspaced Short Palindromic Repeats/genetics , Firmicutes/classification , Firmicutes/genetics , Hydraulic Fracking , Metagenome , Microbial Consortia/genetics , Virus Activation
10.
Environ Microbiol ; 20(12): 4596-4611, 2018 12.
Article in English | MEDLINE | ID: mdl-30394652

ABSTRACT

About 60% of natural gas production in the United States comes from hydraulic fracturing of unconventional reservoirs, such as shales or organic-rich micrites. This process inoculates and enriches for halotolerant microorganisms in these reservoirs over time, resulting in a saline ecosystem that includes methane producing archaea. Here, we survey the biogeography of methanogens across unconventional reservoirs, and report that members of genus Methanohalophilus are recovered from every hydraulically fractured unconventional reservoir sampled by metagenomics. We provide the first genomic sequencing of three isolate genomes, as well as two metagenome assembled genomes (MAGs). Utilizing six other previously sequenced isolate genomes and MAGs, we perform comparative analysis of the 11 genomes representing this genus. This genomic investigation revealed distinctions between surface and subsurface derived genomes that are consistent with constraints encountered in each environment. Genotypic differences were also uncovered between isolate genomes recovered from the same well, suggesting niche partitioning among closely related strains. These genomic substrate utilization predictions were then confirmed by physiological investigation. Fine-scale microdiversity was observed in CRISPR-Cas systems of Methanohalophilus, with genomes from geographically distinct unconventional reservoirs sharing spacers targeting the same viral population. These findings have implications for augmentation strategies resulting in enhanced biogenic methane production in hydraulically fractured unconventional reservoirs.


Subject(s)
Hydraulic Fracking , Methanosarcinaceae/physiology , Ecosystem , Genome, Bacterial , Metagenome , Methanosarcinaceae/genetics , Natural Gas , Oil and Gas Fields
11.
Nat Commun ; 9(1): 4734, 2018 11 09.
Article in English | MEDLINE | ID: mdl-30413711

ABSTRACT

Shapes of edible plant organs vary dramatically among and within crop plants. To explain and ultimately employ this variation towards crop improvement, we determined the genetic, molecular and cellular bases of fruit shape diversity in tomato. Through positional cloning, protein interaction studies, and genome editing, we report that OVATE Family Proteins and TONNEAU1 Recruiting Motif proteins regulate cell division patterns in ovary development to alter final fruit shape. The physical interactions between the members of these two families are necessary for dynamic relocalization of the protein complexes to different cellular compartments when expressed in tobacco leaf cells. Together with data from other domesticated crops and model plant species, the protein interaction studies provide possible mechanistic insights into the regulation of morphological variation in plants and a framework that may apply to organ growth in all plant species.


Subject(s)
Biodiversity , Fruit/anatomy & histology , Fruit/genetics , Plants/anatomy & histology , Plants/genetics , Amino Acid Sequence , Cell Division , Genetic Complementation Test , Models, Biological , Physical Chromosome Mapping , Plant Proteins/chemistry , Plant Proteins/metabolism , Protein Binding , Saccharomyces cerevisiae/metabolism
12.
Virus Res ; 258: 64-67, 2018 10 15.
Article in English | MEDLINE | ID: mdl-30308212

ABSTRACT

The phosphoprotein (P) of the nucleorhabdovirus sonchus yellow net virus has been shown to accumulate in ring-shaped structures in virus-infected nuclei. Further examination by live-cell imaging, in combination with structural examination by transmission electron microscopy and immunolocalization demonstrated that P-rings do not form in association with nucleoli. Furthermore, viral cores were shown to condense on the nucleoplasm-contacting surface of the rings. The data presented here offer evidence for the site of nucleocapsid assembly in SYNV-infected nuclei.


Subject(s)
Cell Nucleus/virology , Nucleocapsid Proteins/chemistry , Phosphoproteins/chemistry , Rhabdoviridae/chemistry , Cell Nucleus/ultrastructure , Microscopy, Electron, Transmission , Microscopy, Fluorescence , Nucleocapsid/chemistry , Rhabdoviridae/genetics , Nicotiana/virology , Viral Proteins/analysis
13.
Appl Environ Microbiol ; 84(12)2018 06 15.
Article in English | MEDLINE | ID: mdl-29625983

ABSTRACT

Lettuce has been implicated in human norovirus (HuNoV) outbreaks. The virus is stable on the leaf surface for at least 2 weeks; however, the dynamics of virus internalization have not been fully investigated. The purpose of this study was to assess the internalization and distribution of HuNoV and two surrogate viruses, porcine sapovirus (SaV) and Tulane virus (TV), in lettuce and spinach. Viral inoculations through the roots of seedlings and the petiole of leaves from mature plants were performed, and the viruses were tracked on days 1 and 6 post-root inoculation and at 16 h and 72 h post-petiole inoculation. Confocal microscopy was used to visualize root-internalized HuNoV. In both lettuce and spinach, (i) HuNoV was internalized into the roots and leaves at similar RNA titers, whereas surrogate viruses were more restricted to the roots, (ii) all three viruses were stable inside the roots and leaves for at least 6 days, and (iii) HuNoV disseminated similarly inside the central veins and leaf lamina, whereas surrogate viruses were more restricted to the central veins. Infectious TV, but not SaV, was detectable in all tissues, suggesting that TV has greater stability than SaV. HuNoV was visualized inside the roots' vascular bundle and the leaf mesophyll of both plants. In conclusion, using surrogate viruses may underestimate the level of HuNoV internalization into edible leaves. The internalization of HuNoV through roots and cut leaves and the dissemination into various spinach and lettuce tissues raise concerns of internal contamination through irrigation and/or wash water.IMPORTANCE Human noroviruses are the leading cause of foodborne outbreaks, with lettuce being implicated in the majority of outbreaks. The virus causes acute gastroenteritis in all age groups, with more severe symptoms in children, the elderly, and immunocompromised patients, contributing to over 200,000 deaths worldwide annually. The majority of deaths due to HuNoV occur in the developing world, where limited sanitation exists along with poor wastewater treatment facilities, resulting in the contamination of water resources that are often used for irrigation. Our study confirms the ability of lettuce and spinach to internalize HuNoV from contaminated water through the roots into the edible leaves. Since these leafy greens are consumed with minimal processing that targets only surface pathogens, the internalized HuNoV presents an added risk to consumers. Thus, preventive measures should be in place to limit the contamination of irrigation water. In addition, better processing technologies are needed to inactivate internalized viral pathogens.


Subject(s)
Lactuca/virology , Norovirus/physiology , Plant Leaves/virology , Spinacia oleracea/virology , Virus Internalization , Food Contamination , Norovirus/genetics , Norovirus/isolation & purification , Plant Roots/virology , RNA, Viral/genetics , Real-Time Polymerase Chain Reaction , Sapovirus/genetics , Sapovirus/isolation & purification , Sapovirus/physiology
14.
Stem Cell Res Ther ; 9(1): 17, 2018 01 29.
Article in English | MEDLINE | ID: mdl-29378639

ABSTRACT

BACKGROUND: Mesenchymal stem (stromal) cells (MSCs) mediate their immunoregulatory and tissue repair functions by secreting paracrine factors, including extracellular vesicles (EVs). In several animal models of human diseases, MSC-EVs mimic the beneficial effects of MSCs. Influenza viruses cause annual outbreaks of acute respiratory illness resulting in significant mortality and morbidity. Influenza viruses constantly evolve, thus generating drug-resistant strains and rendering current vaccines less effective against the newly generated strains. Therefore, new therapies that can control virus replication and the inflammatory response of the host are needed. The objective of this study was to examine if MSC-EV treatment can attenuate influenza virus-induced acute lung injury in a preclinical model. METHODS: We isolated EVs from swine bone marrow-derived MSCs. Morphology of MSC-EVs was determined by electron microscopy and expression of mesenchymal markers was examined by flow cytometry. Next, we examined the anti-influenza activity of MSC-EVs in vitro in lung epithelial cells and anti-viral and immunomodulatory properties in vivo in a pig model of influenza virus. RESULTS: MSC-EVs were isolated from MSC-conditioned medium by ultracentrifugation. MSC-EVs were round-shaped and, similarly to MSCs, expressed mesenchymal markers and lacked the expression of swine leukocyte antigens I and II. Incubation of PKH-26-labeled EVs with lung epithelial cells revealed that MSC-EVs incorporated into the epithelial cells. Next, we examined the anti-influenza and anti-inflammatory properties of MSC-EVs. MSC-EVs inhibited the hemagglutination activity of avian, swine, and human influenza viruses at concentrations of 1.25-5 µg/ml. MSC-EVs inhibited influenza virus replication and virus-induced apoptosis in lung epithelial cells. The anti-influenza activity of MSC-EVs was due to transfer of RNAs from EVs to epithelial cells since pre-incubation of MSC-EVs with RNase enzyme abrogated the anti-influenza activity of MSC-EVs. In a pig model of influenza virus, intratracheal administration of MSC-EVs 12 h after influenza virus infection significantly reduced virus shedding in the nasal swabs, influenza virus replication in the lungs, and virus-induced production of proinflammatory cytokines in the lungs of influenza-infected pigs. The histopathological findings revealed that MSC-EVs alleviated influenza virus-induced lung lesions in pigs. CONCLUSIONS: Our data demonstrated in a relevant preclinical large animal model of influenza virus that MSC-EVs possessed anti-influenza and anti-inflammatory properties and that EVs may be used as cell-free therapy for influenza in humans.


Subject(s)
Acute Lung Injury/therapy , Extracellular Vesicles/transplantation , Mesenchymal Stem Cells/metabolism , Orthomyxoviridae Infections/pathology , Respiratory Mucosa/pathology , Acute Lung Injury/virology , Animals , Anti-Inflammatory Agents/metabolism , Apoptosis , Cell- and Tissue-Based Therapy/methods , Cytokines/metabolism , Disease Models, Animal , Epithelial Cells/virology , Alphainfluenzavirus/metabolism , Orthomyxoviridae Infections/virology , RNA, Viral/genetics , Respiratory Mucosa/cytology , Respiratory Mucosa/virology , Swine , Virus Replication
15.
Front Microbiol ; 8: 1504, 2017.
Article in English | MEDLINE | ID: mdl-28791005

ABSTRACT

[This corrects the article on p. 1189 in vol. 8, PMID: 28702015.].

16.
Front Microbiol ; 8: 1189, 2017.
Article in English | MEDLINE | ID: mdl-28702015

ABSTRACT

Axenic cultures of free-living aerobic ciliates, such as Tetrahymena thermophila and Paramecium aurelia, have been established and routinely used in laboratory research, greatly facilitating, or enabling characterization of their metabolism, physiology, and ecology. Ruminal protozoa are anaerobic ciliates, and they play important roles in feed digestion and fermentation. Although, repeatedly attempted, no laboratory-maintainable axenic culture of ruminal ciliates has been established. When axenic ciliate cultures are developed, antibiotics are required to eliminate the accompanying bacteria. Ruminal ciliates gradually lose viability upon antibiotic treatments, and the resultant axenic cultures can only last for short periods of time. The objective of this study was to evaluate eight antibiotics that have been evaluated in developing axenic cultures of ruminal ciliates, for their toxicity to Entodinium caudatum, which is the most predominant ruminal ciliate species. Scanning and transmission electron microscopy (TEM) showed that the antibiotics damaged both the cell surface and nuclei of E. caudatum and increased accumulation of intracellular glycogen. Combinations of the three least toxic antibiotics failed to eliminate the bacteria that are present in the E. caudatum culture. The combination of ampicillin, carbenicillin, streptomycin, and oxytetracycline was able to eliminate all the bacteria, but the resultant axenic E. caudatum culture gradually lost viability. Adding the bacterial fraction (live) separated from an untreated E. caudatum culture reversed the viability decline and recovered the growth of the treated E. caudatum culture, whereas feeding nine strains of live bacteria isolated from E. caudatum cells, either individually or in combination, could not. Nutritional and metabolic dependence on its associated bacteria, accompanied with direct and indirect inhibition by antibiotics, makes it difficult to establish an axenic culture of E. caudatum. Monoxenic or polyxenic cultures of E. caudatum could be developed if the essential symbiotic partner(s) can be identified.

17.
PLoS Pathog ; 13(3): e1006253, 2017 03.
Article in English | MEDLINE | ID: mdl-28267773

ABSTRACT

Diverse animal and plant viruses block the re-infection of host cells by the same or highly similar viruses through superinfection exclusion (SIE), a widely observed, yet poorly understood phenomenon. Here we demonstrate that SIE of turnip crinkle virus (TCV) is exclusively determined by p28, one of the two replication proteins encoded by this virus. p28 expressed from a TCV replicon exerts strong SIE to a different TCV replicon. Transiently expressed p28, delivered simultaneously with, or ahead of, a TCV replicon, largely recapitulates this repressive activity. Interestingly, p28-mediated SIE is dramatically enhanced by C-terminally fused epitope tags or fluorescent proteins, but weakened by N-terminal modifications, and it inversely correlates with the ability of p28 to complement the replication of a p28-defective TCV replicon. Strikingly, p28 in SIE-positive cells forms large, mobile punctate inclusions that trans-aggregate a non-coalescing, SIE-defective, yet replication-competent p28 mutant. These results support a model postulating that TCV SIE is caused by the formation of multimeric p28 complexes capable of intercepting fresh p28 monomers translated from superinfector genomes, thereby abolishing superinfector replication. This model could prove to be applicable to other RNA viruses, and offer novel targets for antiviral therapy.


Subject(s)
Carmovirus/physiology , Superinfection/microbiology , Virus Replication/physiology , Immunoblotting , Microscopy, Confocal , Plant Diseases/virology , Nicotiana/virology
18.
Sci Rep ; 5: 15346, 2015 Oct 20.
Article in English | MEDLINE | ID: mdl-26481091

ABSTRACT

Infection of plants with viruses containing multiple variants frequently leads to dominance by a few random variants in the systemically infected leaves (SLs), for which a plausible explanation is lacking. We show here that SL dominance by a given viral variant is adequately explained by its fortuitous lead in systemic spread, coupled with its resistance to superinfection by other variants. We analyzed the fate of a multi-variant turnip crinkle virus (TCV) population in Arabidopsis and N. benthamiana plants. Both wild-type and RNA silencing-defective plants displayed a similar pattern of random dominance by a few variant genotypes, thus discounting a prominent role for RNA silencing. When introduced to plants sequentially as two subpopulations, a twelve-hour head-start was sufficient for the first set to dominate. Finally, SLs of TCV-infected plants became highly resistant to secondary invasions of another TCV variant. We propose that random distribution of variant foci on inoculated leaves allows different variants to lead systemic movement in different plants. The leading variants then colonize large areas of SLs, and resist the superinfection of lagging variants in the same areas. In conclusion, superinfection resistance is the primary driver of random enrichment of viral variants in systemically infected plants.


Subject(s)
Plant Diseases/virology , Plant Viruses/physiology , Viral Interference , Arabidopsis/virology , Carmovirus/physiology , Gene Order , Genetic Variation , Genome, Viral , Models, Biological , Plant Leaves/virology
19.
J Exp Bot ; 66(20): 6471-82, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26175354

ABSTRACT

fs8.1 is a major quantitative trait locus (QTL) that controls the elongated shape of tomato (Solanum lycopersicum) fruit. In this study, we fine-mapped the locus from a 47Mb to a 3.03Mb interval on the long arm of chromosome 8. Of the 122 annotated genes found in the fs8.1 region, 51 were expressed during floral development and six were differentially expressed in anthesis-stage ovaries in fs8.1 and wild-type (WT) lines. To identify possible nucleotide polymorphisms that may underlie the fruit shape phenotype, genome sequence analyses between tomato cultivars carrying the mutant and WT allele were conducted. This led to the identification of 158 single-nucleotide polymorphisms (SNPs) and five small indels in the fs8.1 interval, including 31 that could be associated with changes in gene expression or function. Morphological and histological analyses showed that the effects of fs8.1 were mainly on reproductive organ elongation by increasing cell number in the proximal-distal direction. Fruit weight was also increased in fs8.1 compared with WT, which was predominantly attributed to the increased fruit length. By combining the findings from the different analyses, we consider 12 likely candidate genes to underlie fs8.1, including Solyc08g062580 encoding a pentatricopeptide repeat protein, Solyc08g061560 encoding a putative orthologue of ERECTA, which is known to control fruit morphology and inflorescence architecture in Arabidopsis, Solyc08g061910 encoding a GTL2-like trihelix transcription factor, Solyc08g061930 encoding a protein that regulates cytokinin degradation, and two genes, Solyc08g062340 and Solyc08g062450, encoding 17.6kDa class II small heat-shock proteins.


Subject(s)
Fruit/growth & development , Plant Proteins/genetics , Solanum lycopersicum/genetics , Fruit/genetics , Fruit/metabolism , Solanum lycopersicum/growth & development , Solanum lycopersicum/metabolism , Plant Proteins/metabolism , Quantitative Trait Loci , Sequence Alignment , Sequence Analysis, DNA
20.
Genome Biol Evol ; 7(2): 620-35, 2015 Jan 12.
Article in English | MEDLINE | ID: mdl-25587021

ABSTRACT

Phytophagous pentatomid insects can negatively impact agricultural productivity and the brown marmorated stink bug (Halyomorpha halys) is an emerging invasive pest responsible for damage to many fruit crops and ornamental plants in North America. Many phytophagous stink bugs, including H. halys, harbor gammaproteobacterial symbionts that likely contribute to host development, and characterization of symbiont transmission/acquisition and their contribution to host fitness may offer alternative strategies for managing pest species. "Candidatus Pantoea carbekii" is the primary occupant of gastric ceca lumina flanking the distal midgut of H. halys insects and it is acquired each generation when nymphs feed on maternal extrachorion secretions following hatching. Insects prevented from symbiont uptake exhibit developmental delays and aberrant behaviors. To infer contributions of Ca. P. carbekii to H. halys, the complete genome was sequenced and annotated from a North American H. halys population. Overall, the Ca. P. carbekii genome is nearly one-fourth (1.2 Mb) that of free-living congenerics, and retains genes encoding many functions that are potentially host-supportive. Gene content reflects patterns of gene loss/retention typical of intracellular mutualists of plant-feeding insects. Electron and fluorescence in situ microscopic imaging of H. halys egg surfaces revealed that maternal extrachorion secretions were populated with Ca. P. carbekii cells. The reported findings detail a transgenerational mode of symbiont transmission distinct from that observed for intracellular insect mutualists and illustrate the potential additive functions contributed by the bacterial symbiont to this important agricultural pest.


Subject(s)
Ecosystem , Genome, Bacterial , Hemiptera/microbiology , Pantoea/genetics , Symbiosis/genetics , Adaptation, Physiological/genetics , Animals , Cell Division/genetics , DNA Repair/genetics , DNA Replication/genetics , Digestive System/microbiology , Metabolic Networks and Pathways/genetics , Molecular Sequence Data , Nitrogen/metabolism , Ovum/microbiology , Ovum/ultrastructure , Pantoea/cytology , Phylogeny , Plasmids/genetics , Polymorphism, Single Nucleotide/genetics , Stress, Physiological/genetics , Thiamine/biosynthesis
SELECTION OF CITATIONS
SEARCH DETAIL
...