Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 5: 4747, 2014 Aug 27.
Article in English | MEDLINE | ID: mdl-25158760

ABSTRACT

Proactive, that is, unsolicited, prosociality is a key component of our hyper-cooperation, which in turn has enabled the emergence of various uniquely human traits, including complex cognition, morality and cumulative culture and technology. However, the evolutionary foundation of the human prosocial sentiment remains poorly understood, largely because primate data from numerous, often incommensurable testing paradigms do not provide an adequate basis for formal tests of the various functional hypotheses. We therefore present the results of standardized prosociality experiments in 24 groups of 15 primate species, including humans. Extensive allomaternal care is by far the best predictor of interspecific variation in proactive prosociality. Proactive prosocial motivations therefore systematically arise whenever selection favours the evolution of cooperative breeding. Because the human data fit this general primate pattern, the adoption of cooperative breeding by our hominin ancestors also provides the most parsimonious explanation for the origin of human hyper-cooperation.


Subject(s)
Behavior, Animal , Biological Evolution , Cooperative Behavior , Primates , Animals , Child , Child, Preschool , Female , Humans , Male , Motivation , Nontherapeutic Human Experimentation , Primates/psychology
2.
Philos Trans R Soc Lond B Biol Sci ; 368(1630): 20130050, 2013 Nov 19.
Article in English | MEDLINE | ID: mdl-24101632

ABSTRACT

Many species use tools, but the mechanisms underpinning the behaviour differ between species and even among individuals within species, depending on the variants performed. When considering tool use 'as adaptation', an important first step is to understand the contribution made by fixed phenotypes as compared to flexible mechanisms, for instance learning. Social learning of tool use is sometimes inferred based on variation between populations of the same species but this approach is questionable. Specifically, alternative explanations cannot be ruled out because population differences are also driven by genetic and/or environmental factors. To better understand the mechanisms underlying routine but non-universal (i.e. habitual) tool use, we suggest focusing on the ontogeny of tool use and individual variation within populations. For example, if tool-using competence emerges late during ontogeny and improves with practice or varies with exposure to social cues, then a role for learning can be inferred. Experimental studies help identify the cognitive and developmental mechanisms used when tools are used to solve problems. The mechanisms underlying the route to tool-use acquisition have important consequences for our understanding of the accumulation in technological skill complexity over the life course of an individual, across generations and over evolutionary time.


Subject(s)
Adaptation, Physiological , Learning , Tool Use Behavior , Animals , Humans , Phenotype
SELECTION OF CITATIONS
SEARCH DETAIL
...