Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
2.
Sci Rep ; 12(1): 11981, 2022 07 15.
Article in English | MEDLINE | ID: mdl-35840637

ABSTRACT

The earliest stone tool types, sharp flakes knapped from stone cores, are assumed to have played a crucial role in human cognitive evolution. Flaked stone tools have been observed to be accidentally produced when wild monkeys use handheld stones as tools. Holding a stone core in hand and hitting it with another in the absence of flaking, free hand hitting, has been considered a requirement for producing sharp stone flakes by hitting stone on stone, free hand percussion. We report on five observations of free hand hitting behavior in two wild western gorillas, using stone-like objects (pieces of termite mound). Gorillas are therefore the second non-human lineage primate showing free-hand hitting behavior in the wild, and ours is the first report for free hand hitting behavior in wild apes. This study helps to shed light on the morphofunctional and cognitive requirements for the emergence of stone tool production as it shows that a prerequisite for free hand percussion (namely, free hand hitting) is part of the spontaneous behavioral repertoire of one of humans' closest relatives (gorillas). However, the ability to combine free hand hitting with the force, precision, and accuracy needed to facilitate conchoidal fracture in free hand percussion may still have been a critical watershed for hominin evolution.


Subject(s)
Hominidae , Tool Use Behavior , Animals , Gorilla gorilla , Hand , Upper Extremity
3.
Ecol Evol ; 11(12): 7634-7646, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34188840

ABSTRACT

Characterizing animal dispersal patterns and the rational behind individuals' transfer choices is a long-standing question of interest in evolutionary biology. In wild western gorillas (Gorilla gorilla), a one-male polygynous species, previous genetic findings suggested that, when dispersing, females might favor groups with female kin to promote cooperation, resulting in higher-than-expected within-group female relatedness. The extent of male dispersal remains unclear with studies showing conflicting results. To investigate male and female dispersal patterns and extragroup paternity, we analyzed long-term field observations, including female spatial proximity data, together with genetic data (10 autosomal microsatellites) on individuals from a unique set of four habituated western gorilla groups, and four additional extragroup males (49 individuals in total). The majority of offspring (25 of 27) were sired by the group male. For two offspring, evidence for extragroup paternity was found. Contrarily to previous findings, adult females were not significantly more related within groups than across groups. Consistently, adult female relatedness within groups did not correlate with their spatial proximity inferred from behavioral data. Adult females were similarly related to adult males from their group than from other groups. Using R ST statistics, we found significant genetic structure and a pattern of isolation by distance, indicating limited dispersal in this species. Comparing relatedness among females and among males revealed that males disperse farer than females, as expected in a polygamous species. Our study on habituated western gorillas shed light on the dispersal dynamics and reproductive behavior of this polygynous species and challenge some of the previous results based on unhabituated groups.

5.
Am J Phys Anthropol ; 166(2): 481-491, 2018 06.
Article in English | MEDLINE | ID: mdl-29427288

ABSTRACT

OBJECTIVES: All human populations display a right-biased handedness. Nonetheless, if studies on western populations are plenty, investigations of traditional populations living at subsistence levels are rare. Yet, understanding the geographical variation of phenotypes of handedness is crucial for testing evolutionary hypotheses. We aimed to provide a preliminary investigation of factors affecting handedness in 25 Aka pygmies from Central African Republic when spontaneously gesturing or manipulating food/tools (Nactions = 593). MATERIALS AND METHODS: We recorded spontaneous behaviors and characterized individuals' hand preference using GLMM with descriptive variables as target position, task complexity (unimanual/bimanual), task nature (food/tool manipulation, gesture), and task physical/cognitive constraints (precision or power for manipulative actions and informative content for gestures). RESULTS: Individuals were lateralized to the right (93%, N = 15) when manipulating food/tools but not when gesturing. Hand preference was affected by target position but not by task complexity. While nonexplicitly informative gestures were more biased to the right compared to explicitly informative ones, no differences were found within food/tool manipulation (power or precision vs. none). DISCUSSION: Although we do not intend to assume generalizable results due to our reduced sample, our observations provide additional information on handedness in a contemporary traditional society. Especially, the study mainly evidenced considerable cultural effects in gestures while also supporting theories considering active tool manipulation as one of the overriding factor in human handedness evolution.


Subject(s)
Feeding Behavior/physiology , Functional Laterality/physiology , Gestures , Adult , Anthropology, Physical , Black People , Central African Republic , Humans , Male , Middle Aged , Tool Use Behavior
6.
Sci Rep ; 7(1): 15464, 2017 11 13.
Article in English | MEDLINE | ID: mdl-29133851

ABSTRACT

It has been hypothesized that opportunities for social learning affect the size and complexity of the adult skill set of birds and mammals, their learning ability, and thus ultimately also their innovation frequency. To test these predictions we compared rates of social learning, rates of independent exploration (independent learning) and innovation repertoires between individuals of a highly sociable population of Pongo abelii at Suaq Balimbing and a less sociable population of Pongo pygmaeus wurmbii at Tuanan. Suaq immatures showed significantly higher rates of peering, even after controlling for differences in association time and diet complexity, implying that they make disproportionally greater use of their increased opportunities for social learning. As predicted, we found that immatures and adults at Suaq also showed significantly higher rates of exploratory behaviour. The difference between the individuals of the two popuations remained when controlling for association time, suggesting persistent developmental effects, intrinsic differences, or both. Accordingly, Suaq animals had a larger set of learned skills and a higher mean dietary complexity. Our findings show that population level sociability, individual rates of exploration and population-wide repertoires of innovations are positively linked, as predicted.


Subject(s)
Behavior, Animal/physiology , Exploratory Behavior/physiology , Pongo abelii/psychology , Pongo pygmaeus/psychology , Social Behavior , Animals , Behavior Observation Techniques , Female , Male , Peer Group
7.
Front Zool ; 13: 43, 2016.
Article in English | MEDLINE | ID: mdl-27708679

ABSTRACT

BACKGROUND: Orangutans have one of the slowest-paced life histories of all mammals. Whereas life-history theory suggests that the time to reach adulthood is constrained by the time needed to reach adult body size, the needing-to-learn hypothesis instead suggests that it is limited by the time needed to acquire adult-level skills. To test between these two hypotheses, we compared the development of foraging skills and growth trajectories of immature wild orangutans in two populations: at Tuanan (Pongo pygmaeus wurmbii), Borneo, and Suaq Balimbing (Pongo abelii), Sumatra. We collected behavioral data on diet repertoire, feeding rates and ranging competence during focal follows, and estimated growth through non-invasive laser photogrammetry. RESULTS: We found that adult-like diet repertoires are attained around the age of weaning and that female immatures increase their repertoire size faster than their male peers. Adult-level feeding rates of easy techniques are reached just after weaning, but several years later for more difficult techniques, albeit always before adulthood (i.e. age at first reproduction). Independent immatures had faster feeding rates for easy to process items than their mothers, with male immatures achieving faster feeding rates earlier in development relative to females. Sumatran immatures reach adult-level feeding rates 2-3 years later than their Bornean peers, in line with their higher dietary complexity and later weaning. The range-use competence of independently ranging and weaned immatures is similar to that of adult females. Body size measurements showed, immatures grow until female age of first reproduction. CONCLUSIONS: In conclusion, unlike in humans, orangutan foraging skills are in place prior to reproduction. Growth trajectories suggest that energetic constraints, rather than skills, best explain the length of immaturity. However, skill competence for dietary independence is reached later where the adult niche is more complex, which is consistent with the relatively later weaning age with increasing brain size found generally in primates, and apes in particular.

8.
PLoS One ; 7(5): e36180, 2012.
Article in English | MEDLINE | ID: mdl-22586464

ABSTRACT

BACKGROUND: Several studies suggested great ape cultures, arguing that human cumulative culture presumably evolved from such a foundation. These focused on conspicuous behaviours, and showed rich geographic variation, which could not be attributed to known ecological or genetic differences. Although geographic variation within call types (accents) has previously been reported for orang-utans and other primate species, we examine geographic variation in the presence/absence of discrete call types (dialects). Because orang-utans have been shown to have geographic variation that is not completely explicable by genetic or ecological factors we hypothesized that this will be similar in the call domain and predict that discrete call type variation between populations will be found. METHODOLOGY/PRINCIPAL FINDINGS: We examined long-term behavioural data from five orang-utan populations and collected fecal samples for genetic analyses. We show that there is geographic variation in the presence of discrete types of calls. In exactly the same behavioural context (nest building and infant retrieval), individuals in different wild populations customarily emit either qualitatively different calls or calls in some but not in others. By comparing patterns in call-type and genetic similarity, we suggest that the observed variation is not likely to be explained by genetic or ecological differences. CONCLUSION/SIGNIFICANCE: These results are consistent with the potential presence of 'call cultures' and suggest that wild orang-utans possess the ability to invent arbitrary calls, which spread through social learning. These findings differ substantially from those that have been reported for primates before. First, the results reported here are on dialect and not on accent. Second, this study presents cases of production learning whereas most primate studies on vocal learning were cases of contextual learning. We conclude with speculating on how these findings might assist in bridging the gap between vocal communication in non-human primates and human speech.


Subject(s)
Biological Evolution , DNA, Mitochondrial/genetics , Learning , Pongo , Vocalization, Animal , Animals , Genetics, Population/methods , Genotype , Haplotypes , Humans , Pongo/genetics , Pongo/physiology , Speech/physiology , Vocalization, Animal/physiology
9.
Evol Anthropol ; 21(2): 58-68, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22499440

ABSTRACT

"Complex technology" has often been considered a hallmark of human evolution. However, recent findings show that wild monkeys are also capable of habitual tool use. Here we suggest that terrestriality may have been of crucial importance for the innovation, acquisition, and maintenance of "complex" technological skills in primates. Here we define complex technological skills as tool-use variants that include at least two tool elements (for example, hammer and anvil), flexibility in manufacture or use (that is, tool properties are adjusted to the task at hand), and that skills are acquired in part by social learning. Four lines of evidence provide support for the terrestriality effect. First, the only monkey populations exhibiting habitual tool use seem to be particularly terrestrial. Second, semi-terrestrial chimpanzees have more complex tool variants in their repertoire than does their arboreal Asian relative, the orangutan. Third, tool variants of chimpanzees used in a terrestrial setting tend to be more complex than those used exclusively in arboreal contexts. Fourth, the higher frequency in tool use among captive versus wild primates of the same species may be attributed in part to a terrestriality effect. We conclude that whereas extractive foraging, intelligence, and social tolerance are necessary for the emergence of habitual tool use, terrestriality seems to be crucial for acquiring and maintaining complex tool variants, particularly expressions of cumulative technology, within a population. Hence, comparative evidence among primates supports the hypothesis that the terrestriality premium may have been a major pacemaker of hominin technological evolution.


Subject(s)
Biological Evolution , Ecosystem , Haplorhini/physiology , Tool Use Behavior/physiology , Trees , Animals , Cebus , Learning , Macaca , Pan troglodytes , Pongo , Social Behavior , Technology
SELECTION OF CITATIONS
SEARCH DETAIL
...