Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Hepatol Commun ; 7(2): e0009, 2023 02 01.
Article in English | MEDLINE | ID: mdl-37074875

ABSTRACT

BACKGROUND AND AIMS: Adeno-associated virus (AAV) vectors are widely used to deliver therapeutic transgenes to distinct tissues, including the liver. Vectors based on naturally occurring AAV serotypes as well as vectors using engineered capsids have shown variations in tissue tropism and level of transduction between different mouse models. Moreover, results obtained in rodents frequently lack translatability into large animal studies. In light of the increasing interest in AAV vectors for human gene therapy, an increasing number of studies are being performed in nonhuman primates. To keep animal numbers to a minimum and thus optimize the process of AAV capsid selection, we developed a multiplex barcoding approach to simultaneously evaluate the in vivo vector performance for a set of serotypes and capsid-engineered AAV vectors across multiple organs. APPROACH AND RESULTS: Vector biodistribution and transgene expression were assessed by quantitative PCR, quantitative reverse transcription PCR, vector DNA amplicon Illumina sequencing and vRNAseq in male and female rhesus macaques simultaneously dosed with a mixture of barcoded naturally occurring or engineered AAV vectors encoding the same transgene. As expected, our findings show animal-to-animal variation in both the biodistribution and tissue transduction pattern, which was partly influenced by each animal's distinctive serological status. CONCLUSIONS: This method offers a robust approach to AAV vector optimization that can be used to identify and validate AAV vectors for gene delivery to potentially any anatomical site or cell type.


Subject(s)
Capsid , Dependovirus , Animals , Mice , Female , Male , Humans , Capsid/metabolism , Dependovirus/genetics , Dependovirus/metabolism , Tissue Distribution , Macaca mulatta/genetics , Macaca mulatta/metabolism , Capsid Proteins/genetics , Capsid Proteins/metabolism , Genetic Therapy/methods
2.
Hepatology ; 77(3): 802-815, 2023 03 01.
Article in English | MEDLINE | ID: mdl-35976053

ABSTRACT

BACKGROUND AND AIMS: Current liver-directed gene therapies look for adeno-associated virus (AAV) vectors with improved efficacy. With this background, capsid engineering is explored. Whereas shuffled capsid library screenings have resulted in potent liver targeting variants with one first vector in human clinical trials, modifying natural serotypes by peptide insertion has so far been less successful. Here, we now report on two capsid variants, MLIV.K and MLIV.A, both derived from a high-throughput in vivo AAV peptide display selection screen in mice. APPROACH AND RESULTS: The variants transduce primary murine and human hepatocytes at comparable efficiencies, a valuable feature in clinical development, and show significantly improved liver transduction efficacy, thereby allowing a dose reduction, and outperform parental AAV2 and AAV8 in targeting human hepatocytes in humanized mice. The natural heparan sulfate proteoglycan binding ability is markedly reduced, a feature that correlates with improved hepatocyte transduction. A further property that might contribute to the improved transduction efficacy is the lower capsid melting temperature. Peptide insertion also caused a moderate change in sensitivity to human sera containing anti-AAV2 neutralizing antibodies, revealing the impact of epitopes located at the basis of the AAV capsid protrusions. CONCLUSIONS: In conclusion, MLIV.K and MLIV.A are AAV peptide display variants selected in immunocompetent mice with improved hepatocyte tropism and transduction efficiency. Because these features are maintained across species, MLIV variants provide remarkable potential for translation of therapeutic approaches from mice to men.


Subject(s)
Capsid , Dependovirus , Animals , Mice , Humans , Capsid/chemistry , Capsid/metabolism , Serogroup , Dependovirus/genetics , Transduction, Genetic , Genetic Vectors , Liver/metabolism , Peptides/analysis , Peptides/genetics , Peptides/metabolism , Genetic Therapy/methods
3.
Mol Ther ; 30(12): 3601-3618, 2022 12 07.
Article in English | MEDLINE | ID: mdl-35810332

ABSTRACT

AAV vectors are promising delivery tools for human gene therapy. However, broad tissue tropism and pre-existing immunity against natural serotypes limit their clinical use. We identified two AAV capsid variants, AAV2-THGTPAD and AAV2-NLPGSGD, by in vivo AAV2 peptide display library screening in a murine model of pressure overload-induced cardiac hypertrophy. Both variants showed significantly improved efficacy in in vivo cardiomyocyte transduction compared with the parental serotype AAV2 as indicated by a higher number of AAV vector episomes in the nucleus and significant improved transduction efficiency. Both variants also outcompeted the reference serotype AAV9 regarding cardiomyocyte tropism, reaching comparable cardiac transduction efficiencies accompanied with liver de-targeting and decreased transduction efficiency of non-cardiac cells. Capsid modification influenced immunogenicity as sera of mice treated with AAV2-THGTPAD and AAV2-NLPGSGD demonstrated a poor neutralization capacity for the parental serotype and the novel variants. In a therapeutic setting, using the long non-coding RNA H19 in low vector dose conditions, novel AAV variants mediated superior anti-hypertrophic effects and revealed a further improved target-to-noise ratio, i.e., cardiomyocyte tropism. In conclusion, AAV2-THGTPAD and AAV2-NLPGSGD are promising novel tools for cardiac-directed gene therapy outperforming AAV9 regarding the specificity and therapeutic efficiency of in vivo cardiomyocyte transduction.


Subject(s)
Myocytes, Cardiac , RNA, Long Noncoding , Animals , Humans , Mice , Tropism , Capsid
4.
Cancers (Basel) ; 14(2)2022 Jan 15.
Article in English | MEDLINE | ID: mdl-35053588

ABSTRACT

Although therapeutic options are gradually improving, the overall prognosis for patients with hepatocellular carcinoma (HCC) is still poor. Gene therapy-based strategies are developed to complement the therapeutic armamentarium, both in early and late-stage disease. For efficient delivery of transgenes with antitumor activity, vectors demonstrating preferred tumor tropism are required. Here, we report on the natural tropism of adeno-associated virus (AAV) serotype 2 vectors for HCC. When applied intravenously in transgenic HCC mouse models, similar amounts of vectors were detected in the liver and liver tumor tissue. In contrast, transduction efficiency, as indicated by the level of transgene product, was moderate in the liver but was elevated up to 19-fold in mouse tumor tissue. Preferred transduction of HCC compared to hepatocytes was confirmed in precision-cut liver slices from human patient samples. Our mechanistic studies revealed that this preference is due to the improved intracellular processing of AAV2 vectors in HCC, resulting, for example, in nearly 4-fold more AAV vector episomes that serve as templates for gene transcription. Given this background, AAV2 vectors ought to be considered to strengthen current-or develop novel-strategies for treating HCC.

5.
EMBO Mol Med ; 13(4): e13392, 2021 04 09.
Article in English | MEDLINE | ID: mdl-33616280

ABSTRACT

Gene therapy using recombinant adeno-associated virus (rAAV) vectors to treat blinding retinal dystrophies has become clinical reality. Therapeutically impactful targeting of photoreceptors still relies on subretinal vector delivery, which detaches the retina and harbours substantial risks of collateral damage, often without achieving widespread photoreceptor transduction. Herein, we report the development of novel engineered rAAV vectors that enable efficient targeting of photoreceptors via less invasive intravitreal administration. A unique in vivo selection procedure was performed, where an AAV2-based peptide-display library was intravenously administered in mice, followed by isolation of vector DNA from target cells after only 24 h. This stringent selection yielded novel vectors, termed AAV2.GL and AAV2.NN, which mediate widespread and high-level retinal transduction after intravitreal injection in mice, dogs and non-human primates. Importantly, both vectors efficiently transduce photoreceptors in human retinal explant cultures. As proof-of-concept, intravitreal Cnga3 delivery using AAV2.GL lead to cone-specific expression of Cnga3 protein and rescued photopic cone responses in the Cnga3-/- mouse model of achromatopsia. These novel rAAV vectors expand the clinical applicability of gene therapy for blinding human retinal dystrophies.


Subject(s)
Color Vision Defects , Dependovirus , Animals , Capsid , Color Vision Defects/therapy , Dependovirus/genetics , Dogs , Genetic Therapy , Genetic Vectors , Mice , Retina
6.
Expert Opin Biol Ther ; 21(6): 749-766, 2021 06.
Article in English | MEDLINE | ID: mdl-33331201

ABSTRACT

Introduction: Gene therapy clinical trials with adeno-associated virus (AAV) vectors report impressive clinical efficacy data. Nevertheless, challenges have become apparent, such as the need for high vector doses and the induction of anti-AAV immune responses that cause the loss of vector-transduced hepatocytes. This fostered research focusing on development of next-generation AAV vectors capable of dealing with these hurdles.Areas Covered: While both the viral vector genome and the capsid are subjects to engineering, this review focuses on the latter. Specifically, we summarize the principles of capsid engineering strategies, and describe developments and applications of engineered capsid variants for liver-directed gene therapy.Expert Opinion: Capsid engineering is a promising strategy to significantly improve efficacy of the AAV vector system in clinical application. Reduction in vector dose will further improve vector safety, lower the risk of host immune responses and the cost of manufacturing. Capsid engineering is also expected to result in AAV vectors applicable to patients with preexisting immunity toward natural AAV serotypes.


Subject(s)
Capsid , Dependovirus , Dependovirus/genetics , Genetic Therapy , Genetic Vectors , Humans , Liver
7.
ACS Synth Biol ; 9(7): 1638-1649, 2020 07 17.
Article in English | MEDLINE | ID: mdl-32551516

ABSTRACT

Key liver functions, including protein synthesis, carbohydrate metabolism, and detoxification, are performed by specific populations of hepatocytes that are defined by their relative positions within the liver lobules. On a molecular level, the functional heterogeneity with periportal and pericentral phenotypes, so-called metabolic liver zonation, is mainly established by a gradient of canonical Wnt signaling activity. Since the relevant physiological cues are missing in in vitro liver models, they fail to reflect the functional heterogeneity and thus lack many liver functions. We synthetically re-engineered Wnt signaling in murine and human hepatocytes using a doxycycline-dependent cassette for externally controlled digital expression of stabilized ß-catenin. Thereby, we achieved adjustable mosaic-like activation of Wnt signaling in in vitro-cultured hepatocytes that was resistant to negative-feedback loops. This allowed the establishment of long-term-stable periportal-like and pericentral-like phenotypes that mimic the heterogeneity observed in vivo. The in vitro-zonated hepatocytes show differential expression of drug-metabolizing enzymes and associated differential toxicity and higher levels of autophagy. Furthermore, recombinant adeno-associated virus and hepatitis C virus preferentially transduce the pericentral-like zonation phenotype, suggesting a bias of these viruses that has been unappreciated to date. These tightly controlled in vivo-like systems will be important for studies evaluating aspects of liver zonation and for the assessment of drug toxicity for mouse and man.


Subject(s)
Genetic Engineering , Wnt Signaling Pathway/genetics , Animals , Cell Line , Dependovirus/genetics , Down-Regulation/drug effects , Doxycycline/pharmacology , Genetic Vectors/genetics , Genetic Vectors/metabolism , Hepacivirus/genetics , Hepatocytes/cytology , Hepatocytes/metabolism , Mice , Microtubule-Associated Proteins/genetics , Microtubule-Associated Proteins/metabolism , Up-Regulation/drug effects , beta Catenin/genetics , beta Catenin/metabolism
8.
Curr Opin Pharmacol ; 24: 94-104, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26302254

ABSTRACT

Adeno-associated viral (AAV) vectors are the most widely used delivery system for in vivo gene therapy. Vectors developed from natural AAV isolates achieved clinical benefit for a number of patients suffering from monogenetic disorders. However, high vector doses were required and the presence of pre-existing neutralizing antibodies precluded a number of patients from participation. Further challenges are related to AAV's tropism that lacks cell type selectivity resulting in off-target transduction. Conversely, specific cell types representing important targets for gene therapy like stem cells or endothelial cells show low permissiveness. To overcome these limitations, elegant rational design- as well as directed evolution-based strategies were developed to optimize various steps of AAV's host interaction. These efforts resulted in next generation vectors with enhanced capabilities, that is increased efficiency of cell transduction, targeted transduction of previously non-permissive cell types, escape from antibody neutralization and off-target free in vivo delivery of vector genomes. These important achievements are expected to improve current and pave the way towards novel AAV-based applications in gene therapy and regenerative medicine.


Subject(s)
Dependovirus/genetics , Genetic Therapy , Genetic Vectors , Animals , Capsid , Cell Nucleus/metabolism , Host-Pathogen Interactions , Humans
9.
Liver Int ; 34(3): 447-61, 2014 Mar.
Article in English | MEDLINE | ID: mdl-23998316

ABSTRACT

BACKGROUND: Interleukin 12 (IL-12), one of the most potent Th1-cytokines, has been used to improve dendritic cells (DC)-based immunotherapy of cancer. However, it failed to achieve clinical response in patients with hepatocellular carcinoma (HCC). In this study, improved conditions of immunotherapy with DC engineered to express IL-12 were studied in murine subcutaneous HCC. METHODS: Tumour-lysate pulsed DC were transduced with IL-12-encoding adenoviruses or cultivated with recombinant (r)IL-12. DC were injected intratumourally, subcutaneously or intravenously at different stages of tumour-development. RESULTS: Dendritic cell overexpressing IL-12 by adenoviruses showed enhanced expression of costimulatory molecules and stronger priming of HCC-specific effector cells than DC cultured with rIL-12. Intratumoural but not systemic injections of IL-12-DC induced the strongest antitumoural effects reaching complete regressions in 75% of early-staged tumours and in 33% of advanced tumours. Importantly, antitumoural effects could be further enhanced through combination with sorafenib. Analysing the tumour-environment, IL-12-DC increased the levels of Th1-cytokines/chemokines and of CD4(+) -, CD8(+) -T- and NK-cells. Induced immunity was tumour-specific and sustained since all tumour-free animals were protected towards hepatic tumour-cell rechallenge. However, IL-12-DC also enhanced immunosuppressive cytokines, regulatory T cells and even myeloid-derived suppressor cells within the tumours. CONCLUSIONS: Induced IL-12-overexpression by adenoviral vectors can effectively immunostimulate DC. Intratumoural but not systemic injection of activated IL-12-DC was crucial for effective tumour regression. The mechanism of this approach seems to be the induction of a sufficient Th1 tumour-environment allowing the recruitment of effector cells rather than the inhibition of tumour immunosuppression. Thus, improved immunotherapy with IL-12-DC represents a promising approach towards HCC.


Subject(s)
Antineoplastic Agents/therapeutic use , Carcinoma, Hepatocellular/therapy , Dendritic Cells/immunology , Interleukin-12/genetics , Liver Neoplasms/therapy , Adenoviridae/genetics , Animals , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Cell Line, Tumor , Cytokines/metabolism , Cytotoxicity, Immunologic , Humans , Immunotherapy , Mice , Mice, Inbred C3H , Niacinamide/analogs & derivatives , Niacinamide/therapeutic use , Phenylurea Compounds/therapeutic use , Sorafenib
SELECTION OF CITATIONS
SEARCH DETAIL
...