Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Oncol ; 12: 923679, 2022.
Article in English | MEDLINE | ID: mdl-36419904

ABSTRACT

Glioblastoma is considered the most common malignant primary tumor of central nervous system. In spite of the current standard and multimodal treatment, the prognosis of glioblastoma is poor. For this reason, new therapeutic approaches need to be developed to improve the survival time of the glioblastoma patient. In this study, we performed a preclinical experiment to evaluate therapeutic efficacy of 166Ho microparticle suspension administered by microbrachytherapy on a minipig glioblastoma model. Twelve minipigs were divided in 3 groups. Minipigs had injections into the tumor, containing microparticle suspensions of either 166Ho (group 1; n = 6) or 165Ho (group 2; n = 3) and control group (group 3; n = 3). The survival time from treatment to euthanasia was 66 days with a good state of health of all minipigs in group 1. The median survival time from treatment to tumor related death were 8.6 and 7.3 days in groups 2 and control, respectively. Statistically, the prolonged life of group 1 was significantly different from the two other groups (p < 0.01), and no significant difference was observed between group 2 and control (p=0.09). Our trial on the therapeutic effect of the 166Ho microparticle demonstrated an excellent efficacy in tumor control. The histological and immunohistochemical analysis showed that the efficacy was related to a severe 166Ho induced necrosis combined with an immune response due to the presence of the radioactive microparticles inside the tumors. The absence of reflux following the injections confirms the safety of the injection device.

2.
Pharm Res ; 21(4): 585-91, 2004 Apr.
Article in English | MEDLINE | ID: mdl-15139514

ABSTRACT

PURPOSE: The purpose of this study was to demonstrate the potential of a dynamic, multicompartmental in vitro system simulating the human stomach and small intestine (TIM-1) for studying the behavior of oral drug dosage forms under various physiological gastrointestinal conditions. METHODS: Two model drug compounds were studied in TIM-1: a lyophilized Lactobacillus strain and paracetamol (acetaminophen). The Lactobacillus survival rate was determined by bacterial counting in the gastric and ileal effluents while simulating the conditions of the gastrointestinal tract of infants or adults. The availability for absorption of paracetamol from two oral dosage forms was investigated by measuring the drug concentration in jejunal dialysis fluid. The effect of gastrointestinal passage time and food intake on paracetamol absorption was also studied. RESULTS: The Lactobacillus survival rate in both gastric and ileal effluents was higher during simulation of the infant compared to adult conditions. We also showed that (i) paracetamol absorption was faster when it was administered as a free powder than in sustained-release tablet form, (ii) a slow passage time resulted in a delay in the absorption of paracetamol, and (iii) there was a lower rate of absorption when paracetamol was ingested with a standard breakfast as opposed to water. The in vitro results were consistent with in vivo data, showing the predictive value of TIM-1. CONCLUSIONS: TIM-1 is a powerful tool for supplying valuable information about the effects of various gastrointestinal conditions on biopharmaceutical behavior and efficacy of drug delivery systems in the development of oral formulations.


Subject(s)
Digestive System/drug effects , Gastrointestinal Transit/drug effects , Gastrointestinal Transit/physiology , Models, Biological , Acetaminophen/administration & dosage , Administration, Oral , Dosage Forms , Predictive Value of Tests
SELECTION OF CITATIONS
SEARCH DETAIL
...