Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
IUCrdata ; 9(Pt 4): x240346, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38720999

ABSTRACT

The extraction and purification procedures, crystallization and crystal structure refinement (single-crystal X-ray data) of germacrone type II, C15H22O, are presented. The structural results are compared with a previous powder X-ray synchrotron study [Kaduk et al. (2022 ▸). Powder Diffr. 37, 98-104], revealing significant improvements in terms of accuracy and precision. Hirshfeld atom refinement (HAR), as well as Hirshfeld surface analysis, give insight into the inter-molecular inter-actions of germacrone type II.

2.
Dalton Trans ; 53(20): 8541-8545, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38712528

ABSTRACT

The structural features of cobalt-based oxygen evolution catalysts are elucidated by combining high-field MAS NMR spectroscopy and DFT calculations. The superior photocatalytic activity of the heterogeneous system over its homogeneous counterpart is rationalised by the structural features. The higher activity is caused by a more favourable electron-withdrawing character of the framework.

3.
Inorg Chem ; 2024 May 31.
Article in English | MEDLINE | ID: mdl-38819111

ABSTRACT

Although numerous polyphosphido complexes have been accessed through the transition-metal-mediated activation and functionalization of white phosphorus (P4), the selective functionalization of the resulting polyphosphorus ligands in these compounds remains underdeveloped. In this study, we explore the reactions between cyclotetraphosphido cobalt complexes and heterocumulenes, leading to functionalized P4 ligands. Specifically, the reaction of carbon disulfide (CS2) with [K(18c-6)][(Ar*BIAN)Co(η4-P4)] ([K(18c-6)]1, 18c-6 = [18]crown-6) affords the adduct [K(18c-6)][(Ar*BIAN)Co(η3:η1-P4CS2)] ([K(18c-6)]3), in which CS2 is attached to a single phosphorus atom (Ar* = 2,6-dibenzhydryl-4-isopropylphenyl, BIAN = 1,2-bis(arylimino)acenaphthene diimine). In contrast, the insertion of bis(trimethylsilyl)sulfur diimide S(NSiMe3)2 into a P-P bond of [K(18c-6)]1 yields [K(18c-6)][(Ar*BIAN)Co(η3:η1-P4SN2(SiMe3)2)] (K(18c-6)]4). This salt further reacts with Me3SiCl to form [(Ar*BIAN)Co(η3:η1-P4SN2(SiMe3)3] (5), featuring a rare azatetraphosphole ligand. Moreover, treatment of the previously reported complex [(Ar*BIAN)Co(η3:η1-P4C(O)tBu)] (2) with isothiocyanates results in P-C bond insertion, yielding [(Ar*BIAN)Co(η3:η1-P4C(S)N(R)C(O)tBu)] (6a,b; R = Cy, Ph).

4.
Acta Crystallogr E Crystallogr Commun ; 80(Pt 3): 252-255, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38456049

ABSTRACT

Since its founding in 2013, the Young Crystallographers (YC) have become one of the most active working groups not only within their parent organization, the German Crystallographic Society (DGK), but also among other young crystallographers' groups in Europe and the world. The aim of the YC is and always has been to support early-career researchers in the diverse fields of crystallography and the rejuvenation of the field on a national scale. Over the past decade, we have curated events, platforms, and educational content tailored to foster collaboration and knowledge transfer among young crystallographers. In this article, we introduce our group and show how this active and diverse community has shaped the rejuvenation of crystallography in Germany, strengthened by the support of our national society.

5.
Chemistry ; 30(19): e202303762, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38277228

ABSTRACT

An in-depth analysis of the description of bonding within Cp'''Ni-cyclo-P3 (Cp'''=1,2,4-tri-tert-butylcyclopentadienyl, [Ni]P3) employing X-ray diffraction based multipolar modeling, density functional theory (DFT) as well as an "experimental wavefunction" obtained from X-ray restrained wavefunction (XRW) fitting is presented. The results are compared to DFT calculations on white phosphorus - an isolobal analogue to [Ni]P3. A complementary bonding analysis shows insights into the reactivity of [Ni]P3. The isolobal principle is reflected in every aspect of our analysis and the employed methods seamlessly predict the differences in reactivity of [Ni]P3 and P4. Crystallographic modeling, solid-state NMR, and DFT calculations describe the dynamic behavior of the cyclo-P3 unit in the title molecule.

6.
Acta Crystallogr E Crystallogr Commun ; 79(Pt 10): 916-919, 2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37817949

ABSTRACT

The title compound, 2,6-di-bromo-3,4,5-tri-meth-oxy-benzoic acid (DBrTMBA), C10H10Br2O5, was obtained by bromination and transhalogenation of 2-iodo-3,4,5-tri-meth-oxy-benzoic acid with KBrO3. Like the previously reported 2,6-di-iodo-3,4,5-tri-meth-oxy-benzoic acid (DITMBA), the structure of the title compound features a catemeric arrangement of DBrTMBA mol-ecules along an endless chain of carb-oxy-lic H-carbonyl inter-actions. A short carbon-yl-phenyl contact hints at a possible lone pair(O)-π-hole inter-action further stabilizing the chain-like structure over a dimeric arrangement of the carb-oxy-lic acid.

7.
IUCrJ ; 9(Pt 5): 604-609, 2022 Sep 01.
Article in English | MEDLINE | ID: mdl-36071807

ABSTRACT

Correcting for anomalous dispersion is part of any refinement of an X-ray dif-fraction crystal structure determination. The procedure takes the inelastic scattering in the diffraction experiment into account. This X-ray absorption effect is specific to each chemical compound and is particularly sensitive to radiation energies in the region of the absorption edges of the elements in the compound. Therefore, the widely used tabulated values for these corrections can only be approximations as they are based on calculations for isolated atoms. Features of the unique spatial and electronic environment that are directly related to the anomalous dispersion are ignored, although these can be observed spectroscopically. This significantly affects the fit between the crystallographic model and the measured intensities when the excitation wavelength in an X-ray diffraction experiment is close to an element's absorption edge. Herein, we report on synchrotron multi-wavelength single-crystal X-ray diffraction, as well as X-ray absorption spectroscopy experiments which we performed on the mol-ecular compound Mo(CO)6 at energies around the molybdenum K edge. The dispersive (f') and absorptive (f'') terms of the anomalous dispersion can be refined as independent parameters in the full-matrix least-squares refinement. This procedure has been implemented as a new feature in the well-established OLEX2 software suite. These refined parameters are in good agreement with the independently recorded X-ray absorption spectrum. The resulting crystallographic models show significant improvement compared to those employing tabulated values.

8.
IUCrJ ; 9(Pt 3): 349-354, 2022 May 01.
Article in English | MEDLINE | ID: mdl-35546798

ABSTRACT

The crystalline sponge method facilitates the X-ray structure determination of samples that do not crystallize or are too sparsely available to afford viable crystallization. By including these materials in a metal-organic framework, the structure of the guest molecules can be determined. Some of the inherent difficulties of this method are discussed and the use of Cu Kß radiation is presented as a simple and effective means to improve the quality of the diffraction data that can be obtained from a sponge crystal.

9.
Biophys Chem ; 223: 30-38, 2017 04.
Article in English | MEDLINE | ID: mdl-28282626

ABSTRACT

ATP (adenosine triphosphate) is a key reaction for metabolism. Tools from systems biology require standard reaction data in order to predict metabolic pathways accurately. However, literature values for standard Gibbs energy of ATP hydrolysis are highly uncertain and differ strongly from each other. Further, such data usually neglect the activity coefficients of reacting agents, and published data like this is apparent (condition-dependent) data instead of activity-based standard data. In this work a consistent value for the standard Gibbs energy of ATP hydrolysis was determined. The activity coefficients of reacting agents were modeled with electrolyte Perturbed-Chain Statistical Associating Fluid Theory (ePC-SAFT). The Gibbs energy of ATP hydrolysis was calculated by combining the standard Gibbs energies of hexokinase reaction and of glucose-6-phosphate hydrolysis. While the standard Gibbs energy of hexokinase reaction was taken from previous work, standard Gibbs energy of glucose-6-phosphate hydrolysis reaction was determined in this work. For this purpose, reaction equilibrium molalities of reacting agents were measured at pH7 and pH8 at 298.15K at varying initial reacting agent molalities. The corresponding activity coefficients at experimental equilibrium molalities were predicted with ePC-SAFT yielding the Gibbs energy of glucose-6-phosphate hydrolysis of -13.72±0.75kJ·mol-1. Combined with the value for hexokinase, the standard Gibbs energy of ATP hydrolysis was finally found to be -31.55±1.27kJ·mol-1. For both, ATP hydrolysis and glucose-6-phosphate hydrolysis, a good agreement with own and literature values were obtained when influences of pH, temperature, and activity coefficients were explicitly taken into account in order to calculate standard Gibbs energy at pH7, 298.15K and standard state.


Subject(s)
Adenosine Triphosphate/metabolism , Glucose-6-Phosphatase/metabolism , Metabolism , Thermodynamics , Animals , Hexokinase/metabolism , Hydrogen-Ion Concentration , Hydrolysis , Temperature
10.
Biochemistry ; 55(40): 5665-5674, 2016 Oct 11.
Article in English | MEDLINE | ID: mdl-27653185

ABSTRACT

The standard Gibbs energy of reaction enables calculation of the driving force of a (bio)chemical reaction. Gibbs energies of reaction are required in thermodynamic approaches to determine fluxes as well as single reaction conversions of metabolic bioreactions. The hexokinase reaction (phosphorylation of glucose) is the entrance step of glycolysis, and thus its standard Gibbs energy of reaction (ΔRg°) is of great impact. ΔRg° is accessible from equilibrium measurements, and the very small concentrations of the reacting agents cause usually high error bars in data reduction steps. Even worse, works from literature do not account for the nonideal behavior of the reacting agents (activity coefficients were assumed to be unity); thus published ΔRg° values are not standard data. Consistent treatment of activity coefficients of reacting agents is crucial for the accurate determination of standard Gibbs energy from equilibrium measurements. In this work, equilibrium molalities of hexokinase reaction were measured with an enzyme kit. These results were combined with reacting agents' activity coefficients obtained with the thermodynamic model ePC-SAFT. Pure-component parameters for adenosine triphosphate (ATP) and adenosine diphosphate (ADP) were fitted to experimental osmotic coefficients (water + Na2ATP, water + NaADP). ΔRg° of the hexokinase reaction at 298.15 K and pH 7 was found to be -17.83 ± 0.52 kJ·mol-1. This value was compared with experimental literature data; very good agreement between the different ΔRg° values was obtained by accounting for pH, pMg, and the activity coefficients of the reacting agents.


Subject(s)
Hexokinase/metabolism , Hydrogen Bonding , Models, Theoretical , Phosphorylation , Thermodynamics
11.
J Phys Chem A ; 119(37): 9680-91, 2015 Sep 17.
Article in English | MEDLINE | ID: mdl-26317826

ABSTRACT

The thermochemical properties available in the literature for adenine and cytosine are in disarray. A new condensed phase standard (p° = 0.1 MPa) molar enthalpy of formation at T = 298.15 K was measured by using combustion calorimetry. New molar enthalpies of sublimation were derived from the temperature dependence of vapor pressure measured by transpiration and by the quarz-crystal microbalance technique. The heat capacities of crystalline adenine and cytosine were measured by temperature-modulated DSC. Thermodynamic data on adenine and cytosine available in the literature were collected, evaluated, and combined with our experimental results. Thus, the evaluated collection of data together with the new experimental results reported here has helped to resolve contradictions in the available enthalpies of formation. A set of reliable thermochemical data is recommended for adenine and cytosine for further thermochemical calculations. Quantum-chemical calculations of the gas phase molar enthalpies of formation of adenine and cytosine have been performed by using the G4 method and results were in excellent agreement with the recommended experimental data. The standard molar entropies of formation and the standard molar Gibbs functions of formation in crystal and gas state have been calculated. Experimental vapor-pressure data measured in this work were used to estimate pure-component PC-SAFT parameters. This allowed modeling solubility of adenine and cytosine in water over the temperature interval 278-310 K.


Subject(s)
Adenine/chemistry , Benchmarking , Cytosine/chemistry , Models, Theoretical , Quantum Theory , Computer Simulation , Molecular Structure , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...