Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Neurochem ; 2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38317026

ABSTRACT

Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by clinical symptoms of memory and cognitive deficiencies. Postmortem evaluation of AD brain tissue shows proteinopathy that closely associate with the progression of this dementing disorder, including the accumulation of extracellular beta amyloid (Aß) and intracellular hyperphosphorylated tau (pTau) with neurofibrillary tangles (NFTs). Current therapies targeting Aß have limited clinical efficacy and life-threatening side effects and highlight the need for alternative treatments targeting pTau and other pathophysiologic mechanisms driving AD pathogenesis. The brain's extracellular matrices (ECM), particularly perineuronal nets (PNNs), play a crucial role in brain functioning and neurocircuit stability, and reorganization of these unique PNN matrices has been associated with the progression of AD and accumulation of pTau in humans. We hypothesize that AD-associated changes in PNNs may in part be driven by the accumulation of pTau within the brain. In this work, we investigated whether the presence of pTau influenced PNN structural integrity and PNN chondroitin sulfate-glycosaminoglycan (CS-GAG) compositional changes in two transgenic mouse models expressing tauopathy-related AD pathology, PS19 (P301S) and Tau4RTg2652 mice. We show that PS19 mice exhibit an age-dependent loss of hippocampal PNN CS-GAGs, but not the underlying aggrecan core protein structures, in association with pTau accumulation, gliosis, and neurodegeneration. The loss of PNN CS-GAGs were linked to shifts in CS-GAG sulfation patterns to favor the neuroregenerative isomer, 2S6S-CS. Conversely, Tau4RTg2652 mice exhibit stable PNN structures and normal CS-GAG isomer composition despite robust pTau accumulation, suggesting a critical interaction between neuronal PNN glycan integrity and neighboring glial cell activation. Overall, our findings provide insights into the complex relationship between PNN CS-GAGs, pTau pathology, gliosis, and neurodegeneration in mouse models of tauopathy, and offer new therapeutic insights and targets for AD treatment.

2.
Alzheimers Res Ther ; 15(1): 96, 2023 05 23.
Article in English | MEDLINE | ID: mdl-37221560

ABSTRACT

Carrying the apolipoprotein E (ApoE) Ɛ4 allele is associated with an increased risk of cerebral amyloidosis and late-onset Alzheimer's disease, but the degree to which apoE glycosylation affects its development is not clear. In a previous pilot study, we identified distinct total and secondary isoform-specific cerebral spinal fluid (CSF) apoE glycosylation profiles, with the E4 isoform having the lowest glycosylation percentage (E2 > E3 > E4). In this work, we extend the analysis to a larger cohort of individuals (n = 106), utilizing matched plasma and CSF samples with clinical measures of AD biomarkers. The results confirm the isoform-specific glycosylation of apoE in CSF, resulting from secondary CSF apoE glycosylation patterns. CSF apoE glycosylation percentages positively correlated with CSF Aß42 levels (r = 0.53, p < 0.0001). These correlations were not observed for plasma apoE glycosylation. CSF total and secondary apoE glycosylation percentages also correlated with the concentration of CSF small high-density lipoprotein particles (s-HDL-P), which we have previously shown to be correlated with CSF Aß42 levels and measures of cognitive function. Desialylation of apoE purified from CSF showed reduced Aß42 degradation in microglia with E4 > E3 and increased binding affinity to heparin. These results indicate that apoE glycosylation has a new and important role in influencing brain Aß metabolism and can be a potential target of treatment.


Subject(s)
Apolipoprotein E4 , Apolipoproteins E , Humans , Glycosylation , Alleles , Pilot Projects
SELECTION OF CITATIONS
SEARCH DETAIL
...