Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Physiol Plant ; 174(4): e13744, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35780469

ABSTRACT

Ryegrass (Lolium perenne L.) regrowth after defoliation results from the mobilization of sugar reserves (mainly fructans) and, simultaneously, the efficient lateral transport of sucrose toward growing tissues. However, as for grasses overall, it is not yet known if the induction of this transport is solely linked to the sugar demand of growing tissues via the modification of sugar content at the tissue or cellular level or if it could be triggered by a wounding signal due to the defoliation itself. Ryegrass plants were therefore submitted to total or partial defoliation, pinning of the leaf blades to simulate wounding, or to leaf spraying with 100 µM methyl jasmonate (MeJA), a phytohormone related to wounding. As a response to total or partial defoliation, fructans were mobilized, and the expression of the sucrose lateral transporter LpSUT1 was induced. This highlights an efficient intra-plant compensatory partitioning of sugar resources between defoliated and intact tillers, resulting in the adaptation to regrow after moderate to severe defoliation. The MeJA treatment strongly decreased fructan content. Pinning and especially MeJA largely and quickly increased sucrose content and LpSUT1 transcript levels in leaf sheaths and elongating leaf bases, suggesting a direct effect of wounding on the upregulation of the sucrose lateral transporter. The overall results suggest that sucrose transport capacity and fructan degradation are induced by defoliation through the modification of source-sink relationships for sugars at the plant level and are mediated by phytohormones associated with wounding, such as jasmonates.


Subject(s)
Lolium , Acetates , Cyclopentanes , Fructans/metabolism , Lolium/genetics , Lolium/metabolism , Membrane Transport Proteins/metabolism , Oxylipins , Plant Leaves/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Sucrose/metabolism
2.
J Exp Bot ; 69(16): 3975-3986, 2018 07 18.
Article in English | MEDLINE | ID: mdl-29931373

ABSTRACT

In grassland plant communities, the ability of individual plants to regrow after defoliation is of crucial importance since it allows the restoration of active photosynthesis and plant growth. The aim of this study was to evaluate the effects of increasing defoliation intensity (0, 25, 65, 84, and 100% of removed leaf area) on sugar remobilization and N uptake, remobilization, and allocation in roots, adult leaves, and growing leaves of ryegrass over 2 days, using a 15N tracer technique. Increasing defoliation intensity decreased plant N uptake in a correlative way and increased plant N remobilization, but independently. The relative contribution of N stored before defoliation to leaf growth increased when defoliation intensity was severe. In most conditions, root N reserves also contributed to leaf regrowth, but much less than adult leaves and irrespective of defoliation intensity. A threshold of defoliation intensity (65% leaf area removal) was identified below which C (glucose, fructose, sucrose, fructans), and N (amino acids, soluble proteins) storage compounds were not recruited for regrowth. By contrast, nitrate content increased in elongating leaf bases above this threshold. Wounding associated with defoliation is thus not the predominant signal that triggers storage remobilization and controls the priority of resource allocation to leaf meristems. A framework integrating the sequential events leading to the refoliation of grasses is proposed on the basis of current knowledge and on the findings of the present work.


Subject(s)
Carbohydrate Metabolism , Lolium/metabolism , Nitrogen/metabolism , Plant Leaves/metabolism , Lolium/growth & development , Plant Leaves/growth & development , Plant Roots/growth & development
3.
Plant Physiol Biochem ; 84: 32-44, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25240108

ABSTRACT

Rye-grass fast regrowth after defoliation results from an efficient mobilization of C reserves which are transported as sucrose towards regrowing leaves, and which can be supported by one or several sucrose transporters (SUTs) like LpSUT1. Therefore, our objectives were to isolate, identify, characterize and immunolocalize such sucrose transporters. A protein (LpSUT2) showing a twelve spanning trans-membrane domain, extended N terminal and internal cytoplasmic loop, and kinetic properties consistent with well-known sucrose transporters, was isolated and successfully characterized. Along with LpSUT1, it was mainly localized in mesophyll cells of leaf sheaths and elongating leaf bases. These transporters were also found in parenchyma bundle sheath (PBS) cells but they were not detected in the sieve element/companion cell complex of the phloem. Unlike LpSUT1 transcript levels which increased as a response to defoliation in source and sink tissues, LpSUT2 transcript levels were unaffected by defoliation and weakly expressed. Interestingly, sucrose transport by LpSUT2 was inhibited by fructose. LpSUT1 and LpSUT2 appeared to have different functions. LpSUT1 is proposed to play a key role in C storage and mobilization by allowing sucrose transport between PBS and mesophyll cells, depending on the plant C status. LpSUT2 could be involved in sucrose/fructose sensing at sub-cellular level.


Subject(s)
Lolium/metabolism , Membrane Transport Proteins/metabolism , Plant Proteins/metabolism , Biological Transport , Fructose/metabolism
4.
Plant Physiol Biochem ; 61: 88-96, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23085586

ABSTRACT

Sucrose transport between source and sink tissues is supposed to be a key-step for an efficient regrowth of perennial rye-grass after defoliation and might be altered by light conditions. We assessed the effect of different light regimes (high vs low light applied before or after defoliation) on growth, fructans and sucrose mobilization, as well as on sucrose transporter expression during 14 days of regrowth. Our results reported that defoliation led to a mobilization of C reserves (first sucrose and then fructans), which was parallel to an induction of LpSUT1 sucrose transporter expression in source and sink tissues (i.e. leaf sheaths and elongating leaf bases, respectively) irrespective to light conditions. Light regime (high or low light) had little effects on regrowth and on C reserves mobilization during the first 48 h of regrowth after defoliation. Thereafter, low light conditions, delaying the recovery of photosynthetic capacities, had a negative effect on C reserves re-accumulation (especially sucrose). Surprisingly, high light did not enhance sucrose transporter expression. Indeed, while light conditions had no effect on LpSUT1 expression, LpSUT2 transcripts levels were enhanced for low light grown plants. These results indicate that two sucrose transporter currently identified in Lolium perenne L. are differentially regulated by light and sucrose.


Subject(s)
Adaptation, Physiological/genetics , Carbon/metabolism , Light , Lolium/physiology , Membrane Transport Proteins/genetics , Plant Leaves/physiology , Plant Proteins/genetics , Sucrose/metabolism , Biological Transport , Fructans/metabolism , Gene Expression Regulation, Plant , Genes, Plant , Membrane Transport Proteins/metabolism , Photosynthesis , Plant Proteins/metabolism , Stress, Physiological/genetics , Transcription, Genetic
5.
J Exp Bot ; 63(6): 2363-75, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22371080

ABSTRACT

This work assessed the central carbohydrate metabolism of actively photosynthesizing leaf blades of a C3 grass (Lolium perenne L.). The study used dynamic (13)C labelling of plants growing in continuous light with contrasting supplies of nitrogen ('low N' and 'high N') and mathematical analysis of the tracer data with a four-pool compartmental model to estimate rates of: (i) sucrose synthesis from current assimilation; (ii) sucrose export/use; (iii) sucrose hydrolysis (to glucose and fructose) and resynthesis; and (iv) fructan synthesis and sucrose resynthesis from fructan metabolism. The contents of sucrose, fructan, glucose, and fructose were almost constant in both treatments. Labelling demonstrated that all carbohydrate pools were turned over. This indicated a system in metabolic steady state with equal rates of synthesis and degradation/consumption of the individual pools. Fructan content was enhanced by nitrogen deficiency (55 and 26% of dry mass at low and high N, respectively). Sucrose content was lower in nitrogen-deficient leaves (2.7 versus 6.7%). Glucose and fructose contents were always low (<1.5%). Interconversions between sucrose, glucose, and fructose were rapid (with half-lives of individual pools ranging between 0.3 and 0.8 h). Futile cycling of sucrose through sucrose hydrolysis (67 and 56% of sucrose at low and high N, respectively) and fructan metabolism (19 and 20%, respectively) was substantial but seemed to have no detrimental effect on the relative growth rate and carbon-use efficiency of these plants. The main effect of nitrogen deficiency on carbohydrate metabolism was to increase the half-life of the fructan pool from 27 to 62 h and to effectively double its size.


Subject(s)
Carbohydrate Metabolism/drug effects , Carbon/metabolism , Fructans/metabolism , Lolium/metabolism , Nitrogen/pharmacology , Sucrose/metabolism , Carbohydrate Metabolism/radiation effects , Carbon Isotopes/analysis , Fertilizers , Fructose/metabolism , Glucose/metabolism , Light , Lolium/drug effects , Lolium/radiation effects , Models, Biological , Photosynthesis , Plant Leaves/genetics , Plant Leaves/growth & development , Plant Leaves/metabolism , Substrate Cycling/drug effects , Substrate Cycling/radiation effects , Time Factors
6.
Funct Plant Biol ; 32(4): 321-334, 2005 May.
Article in English | MEDLINE | ID: mdl-32689134

ABSTRACT

We studied the effects of stubble carbon / nitrogen (C / N) reserves or residual leaf area (RLA) on the contribution of taproot C / N reserves to shoot regrowth of Medicago sativa L. after cutting. The study assessed the effects of two cutting heights (6 and 15 cm), two RLAs (0 or 100%), and two initial C / N reserve levels (high N or low N) on forage production, nitrogen (N) distribution, and C / N reserve dynamics within stubble and taproot.

7.
Physiol Plant ; 120(1): 113-123, 2004 Jan.
Article in English | MEDLINE | ID: mdl-15032883

ABSTRACT

This study presents the effects of methyl jasmonate (MeJA) on growth, N uptake, N partitioning, and N storage in taproots of non-nodulated alfalfa (cv. Lodi). When compared to untreated plants, addition of 100 micro M MeJA to the nutrient solution for 14 days reduced total growth and modified biomass partitioning between shoots and roots in favour of taproots and lateral roots. MeJA decreased N uptake (after 7 days) and increased N partitioning towards roots after 14 days. This preferential N partitioning to roots was accompanied by increased N storage in taproots as soluble proteins. Compared to total soluble proteins, VSP accumulation occurred earlier (7 days), and was greater (2-fold increase) in plants treated with 100 micro M MeJA. Steady-state transcript levels for two VSPs (32 and 57 kDa) also increased markedly (about 4-fold) in roots of plants treated with 100 micro M MeJA. This suggests that MeJA could act directly (transcriptional regulation) or indirectly (via the changes of N partitioning among alfalfa organs) on N storage as soluble proteins and in particular, VSPs. Because the deduced amino acid sequence of the 32 kDa VSP clone reveals high homology with Class III chitinases, we propose that the 32 kDa VSP may have a role in pathogen defense, in addition to its function as a storage protein.

8.
Funct Plant Biol ; 30(8): 853-863, 2003 Sep.
Article in English | MEDLINE | ID: mdl-32689070

ABSTRACT

Our objective was to study the effect of short-day photoperiod for 28, 42 and 56 d on growth, N uptake and N partitioning, particularly vegetative storage protein (VSP) accumulation in taproots of two alfalfa (Medicagosativa L.) cultivars (Lodi and Europe). For both varieties, the reduction of daylength from 16 h (long day,LD) to 8 h (short day, SD) for 28 d reduced total plant growth by decreasing shoot growth. Nitrogen uptake and N distribution within the plant was determined by 15N labeling. N uptake decreased with SD treatment duration, and was 2- and 3-fold lower for Europe and Lodi, respectively, for 56 d in SD conditions when compared with LD plants. The SD treatment resulted in preferential partitioning of N to taproots in comparison with LD conditions (19vs 9% for Lodi and 12 vs 5% for Europe after 28 d). For both cultivars, the SD-induced changes in N allocation to taproots did not significantly affect taproot soluble protein concentrations during 42 d of daylength treatment. In contrast, VSP accumulation occurred after only 28 d for plants grown in SD conditions (6.2 vs 4.8 mg g-1 DW for Lodi and 5.1 vs 1.4 mg g-1 DW for Europe). SD exposure also increased vsp 57 and vsp 32 mRNA transcript levels in Lodi and Europe (up to 2-fold higher) taproots in SD for 28 d compared with LD conditions. Overall results indicate that photoperiod modulates taproot N accumulation in alfalfa by enhancing both ß-amylase (vsp 57) and vsp 32 gene expression and accumulation. The enhanced VSP accumulation by short-day photoperiod may result from altered VSP gene expression / transcript stability or occur indirectly through altered N source-sink relationships. Additionally, when SD treatment included a night break with 15 min illumination with sodium high pressure light or red light, our results suggest that the induction of vsp 57 and vsp 32 gene expressions by SD signal is mediated by the phytochrome system.

SELECTION OF CITATIONS
SEARCH DETAIL
...