Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Sports Sci Med ; 16(3): 333-342, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28912650

ABSTRACT

Compression and cold therapy used separately have shown to reduce negative effects of tissue damage. The combining compression and cold therapy (cryocompression) as a single recovery modality has yet to be fully examined. To examine the effects of cryocompression on recovery following a bout of heavy resistance exercise, recreationally resistance trained men (n =16) were recruited, matched, and randomly assigned to either a cryocompression group (CRC) or control group (CON). Testing was performed before and then immediately after exercise, 60 minutes, 24 hours, and 48 hours after a heavy resistance exercise workout (barbell back squats for 4 sets of 6 reps at 80% 1RM, 90 sec rest between sets, stiff legged deadlifts for 4 sets of 8 reps at 1.0 X body mass with 60 sec rest between sets, 4 sets of 10 eccentric Nordic hamstring curls, 45 sec rest between sets). The CRC group used the CRC system for 20-mins of cryocompression treatment immediately after exercise, 24 hours, and 48 hours after exercise. CON sat quietly for 20-mins at the same time points. Muscle damage [creatine kinase], soreness (visual analog scale, 0-100), pain (McGill Pain Q, 0-5), fatigue, sleep quality, and jump power were significantly (p < 0.05) improved for CRC compared to CON at 24 and 48 hours after exercise. Pain was also significantly lower for CRC compared to CON at 60-mins post exercise. These findings show that cryocompression can enhance recovery and performance following a heavy resistance exercise workout.

2.
ASAIO J ; 63(2): 134-138, 2017.
Article in English | MEDLINE | ID: mdl-27984317

ABSTRACT

Counterpulsation devices (CPDs) require an accurate, reliable electrocardiogram (ECG) waveform for triggering inflation and deflation. Surface electrodes are for short-term use, and transvenous/epicardial leads require invasive implant procedure. A subcutaneous ECG lead configuration was developed as an alternative approach for long-term use with timing mechanical circulatory support (MCS) devices. In this study, efficacy testing was completed by simultaneously recording ECG waveforms from clinical-grade epicardial (control) and subcutaneous (test) leads in chronic ischemic heart failure calves implanted with CPD for up to 30 days. Sensitivity and specificity of CPD triggering by R-wave detection was quantified for each lead configuration. The subcutaneous leads provided 98.9% positive predictive value and 98.9% sensitivity compared to the epicardial ECG leads. Lead migration (n = 1) and fracture (n = 1) were observed in only 2 of 40 implanted leads, without adversely impacting triggering efficacy due to lead redundancy. These findings demonstrate the efficacy of subcutaneous ECG leads for long-term CPD timing and potential use as an alternative method for MCS device timing.


Subject(s)
Counterpulsation , Electrocardiography , Heart Failure/therapy , Animals , Cattle , Counterpulsation/instrumentation , Electrocardiography/methods , Heart Failure/physiopathology , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...