Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Pharm Sci ; 105(9): 2782-2793, 2016 09.
Article in English | MEDLINE | ID: mdl-27113473

ABSTRACT

This study investigates 3 amorphous technologies to improve the dissolution rate and oral bioavailability of flubendazole (FLU). The selected approaches are (1) a standard spray-dried dispersion with hydroxypropylmethylcellulose (HPMC) E5 or polyvinylpyrrolidone-vinyl acetate 64, both with Vitamin E d-α-tocopheryl polyethylene glycol succinate; (2) a modified process spray-dried dispersion (MPSDD) with either HPMC E3 or hydroxypropylmethylcellulose acetate succinate (HPMCAS-M); and (3) confining FLU in ordered mesoporous silica (OMS). The physicochemical stability and in vitro release of optimized formulations were evaluated following 2 weeks of open conditions at 25°C/60% relative humidity (RH) and 40°C/75% RH. All formulations remained amorphous at 25°C/60% RH. Only the MPSDD formulation containing HPMCAS-M and 3/7 (wt./wt.) FLU/OMS did not crystallize following 40°C/75% RH exposure. The OMS and MPSDD formulations contained the lowest and highest amount of hydrolyzed degradant, respectively. All formulations were dosed to rats at 20 mg/kg in suspension. One FLU/OMS formulation was also dosed as a capsule blend. Plasma concentration profiles were determined following a single dose. In vivo findings show that the OMS capsule and suspension resulted in the overall highest area under the curve and Cmax values, respectively. These results cross-evaluate various amorphous formulations and provide a link to enhanced biopharmaceutical performance.


Subject(s)
Antinematodal Agents/administration & dosage , Antinematodal Agents/pharmacokinetics , Mebendazole/analogs & derivatives , Animals , Desiccation , Drug Compounding , Drug Delivery Systems , Humidity , Male , Mebendazole/administration & dosage , Mebendazole/pharmacokinetics , Methylcellulose/analogs & derivatives , Mouth Mucosa/metabolism , Povidone , Rats , Rats, Sprague-Dawley , Suspensions , Vitamin E/chemistry
2.
Bioorg Med Chem Lett ; 23(1): 310-7, 2013 Jan 01.
Article in English | MEDLINE | ID: mdl-23177258

ABSTRACT

The design and synthesis of novel HIV-1 protease inhibitors (PIs) (1-22), which display high potency against HIV-1 wild-type and multi-PI-resistant HIV-mutant clinical isolates, is described. Lead optimization was initiated from compound 1, a Phe-Phe hydroxyethylene peptidomimetic PI, and was directed towards the discovery of new PIs suitable for a long-acting (LA) injectable drug application. Introducing a heterocyclic 6-methoxy-3-pyridinyl or a 6-(dimethylamino)-3-pyridinyl moiety (R(3)) at the para-position of the P1' benzyl fragment generated compounds with antiviral potency in the low single digit nanomolar range. Halogenation or alkylation of the metabolic hot spots on the various aromatic rings resulted in PIs with high stability against degradation in human liver microsomes and low plasma clearance in rats. Replacing the chromanolamine moiety (R(1)) in the P2 protease binding site by a cyclopentanolamine or a cyclohexanolamine derivative provided a series of high clearance PIs (16-22) with EC(50)s on wild-type HIV-1 in the range of 0.8-1.8 nM. PIs 18 and 22, formulated as nanosuspensions, showed gradual but sustained and complete release from the injection site over two months in rats, and were therefore identified as interesting candidates for a LA injectable drug application for treating HIV/AIDS.


Subject(s)
Carbamates/chemical synthesis , Dipeptides/chemical synthesis , Drug Design , HIV Protease Inhibitors/chemical synthesis , HIV Protease/chemistry , HIV-1/enzymology , Pyridines/chemical synthesis , Alkylation , Animals , Carbamates/chemistry , Carbamates/pharmacokinetics , Dipeptides/chemistry , Dipeptides/pharmacokinetics , HIV Protease/metabolism , HIV Protease Inhibitors/chemistry , HIV Protease Inhibitors/pharmacokinetics , Half-Life , Halogenation , Humans , Microsomes, Liver/metabolism , Pyridines/chemistry , Pyridines/pharmacokinetics , Rats , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...