Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Stem Cells ; 36(2): 192-205, 2018 02.
Article in English | MEDLINE | ID: mdl-29044892

ABSTRACT

One strategy for stem cell-based therapy of the cerebral cortex involves the generation and transplantation of functional, histocompatible cortical-like neurons from embryonic stem cells (ESCs). Diploid parthenogenetic Pg-ESCs have recently emerged as a promising source of histocompatible ESC derivatives for organ regeneration but their utility for cerebral cortex therapy is unknown. A major concern with Pg-ESCs is genomic imprinting. In contrast with biparental Bp-ESCs derived from fertilized oocytes, Pg-ESCs harbor two maternal genomes but no sperm-derived genome. Pg-ESCs are therefore expected to have aberrant expression levels of maternally expressed (MEGs) and paternally expressed (PEGs) imprinted genes. Given the roles of imprinted genes in brain development, tissue homeostasis and cancer, their deregulation in Pg-ESCs might be incompatible with therapy. Here, we report that, unexpectedly, only one gene out of 7 MEGs and 12 PEGs was differentially expressed between Pg-ESCs and Bp-ESCs while 13 were differentially expressed between androgenetic Ag-ESCs and Bp-ESCs, indicating that Pg-ESCs but not Ag-ESCs, have a Bp-like imprinting compatible with therapy. In vitro, Pg-ESCs generated cortical-like progenitors and electrophysiologically active glutamatergic neurons that maintained the Bp-like expression levels for most imprinted genes. In vivo, Pg-ESCs participated to the cortical lineage in fetal chimeras. Finally, transplanted Pg-ESC derivatives integrated into the injured adult cortex and sent axonal projections in the host brain. In conclusion, mouse Pg-ESCs generate functional cortical-like neurons with Bp-like imprinting and their derivatives properly integrate into both the embryonic cortex and the injured adult cortex. Collectively, our data support the utility of Pg-ESCs for cortical therapy. Stem Cells 2018;36:192-205.


Subject(s)
Cerebral Cortex/cytology , Cerebral Cortex/metabolism , Embryonic Stem Cells/cytology , Embryonic Stem Cells/metabolism , Animals , DNA Methylation/genetics , DNA Methylation/physiology , Electrophysiology , Genomic Imprinting/genetics , Genomic Imprinting/physiology , Mice , Mice, Inbred C57BL , Neurons/cytology , Neurons/metabolism , Parthenogenesis/genetics , Parthenogenesis/physiology
2.
ACS Chem Neurosci ; 8(8): 1724-1734, 2017 08 16.
Article in English | MEDLINE | ID: mdl-28511005

ABSTRACT

l-Theanine (or l-γ-N-ethyl-glutamine) is the major amino acid found in Camellia sinensis. It has received much attention because of its pleiotropic physiological and pharmacological activities leading to health benefits in humans, especially. We describe here a new, easy, efficient, and environmentally friendly chemical synthesis of l-theanine and l-γ-N-propyl-Gln and their corresponding d-isomers. l-Theanine, and its derivatives obtained so far, exhibited partial coagonistic action at N-methyl-d-aspartate (NMDA) receptors, with no detectable agonist effect at other glutamate receptors, on cultured hippocampal neurons. This activity was retained on NMDA receptors expressed in Xenopus oocytes. In addition, both GluN2A and GluN2B containing NMDA receptors were equally modulated by l-theanine. The stereochemical change from l-theanine to d-theanine along with the substitution of the ethyl for a propyl moiety in the γ-N position of l- and d-theanine significantly enhanced the biological efficacy, as measured on cultured hippocampal neurons. l-Theanine structure thus represents an interesting backbone to develop novel NMDA receptor modulators.


Subject(s)
Hippocampus/metabolism , Neurons/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism , Animals , Calcium/metabolism , Cells, Cultured , Excitatory Amino Acid Agonists/chemical synthesis , Excitatory Amino Acid Agonists/pharmacology , Glutamates/metabolism , Glutamic Acid/metabolism , Hippocampus/drug effects , Membrane Potentials/drug effects , Membrane Potentials/physiology , Mice , Neurons/drug effects , Oocytes , Rats, Sprague-Dawley , Receptors, N-Methyl-D-Aspartate/agonists , Xenopus , gamma-Aminobutyric Acid/metabolism
3.
Cereb Cortex ; 27(3): 2418-2433, 2017 03 01.
Article in English | MEDLINE | ID: mdl-27095822

ABSTRACT

In vitro corticogenesis from embryonic stem cells (ESCs) is an attractive model of cortical development and a promising tool for cortical therapy. It is unknown to which extent epigenetic mechanisms crucial for cortex development and function, such as parental genomic imprinting, are recapitulated by in vitro corticogenesis. Here, using genome-wide transcriptomic and methylation analyses on hybrid mouse tissues and cells, we find a high concordance of imprinting status between in vivo and ESC-derived cortices. Notably, in vitro corticogenesis strictly reproduced the in vivo parent-of-origin-dependent expression of 41 imprinted genes (IGs), including Mest and Cdkn1c known to control corticogenesis. Parent-of-origin-dependent DNA methylation was also conserved at 14 of 18 imprinted differentially methylated regions. The least concordant imprinted locus was Gpr1-Zdbf2, where the aberrant bi-allelic expression of Zdbf2 and Adam23 was concomitant with a gain of methylation on the maternal allele in vitro. Combined, our data argue for a broad conservation of the epigenetic mechanisms at imprinted loci in cortical cells derived from ESCs. We propose that in vitro corticogenesis helps to define the still poorly understood mechanisms that regulate imprinting in the brain and the roles of IGs in cortical development.


Subject(s)
Cerebral Cortex/growth & development , Cerebral Cortex/metabolism , Embryonic Stem Cells/metabolism , Genomic Imprinting , Animals , Cell Line , Cell Proliferation/physiology , DNA Methylation , Fluorescent Antibody Technique , Gene Expression Regulation, Developmental , Genetic Loci , Mice , Microscopy, Fluorescence , Neural Stem Cells/metabolism , Neurogenesis/physiology , Neuroglia/metabolism , Neurons/metabolism , Polymorphism, Restriction Fragment Length , Polymorphism, Single Nucleotide , Real-Time Polymerase Chain Reaction , Transcriptome
SELECTION OF CITATIONS
SEARCH DETAIL
...