Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Pharmacol Exp Ther ; 388(3): 774-787, 2024 02 15.
Article in English | MEDLINE | ID: mdl-38135509

ABSTRACT

This study provides a unique translational research opportunity to help both humans and dogs diagnosed with diseases that carry dismal prognoses in both species: histiocytic sarcoma (HS), hemangiosarcoma (HSA), and disseminated mastocytosis/mast cell tumor (MCT). Although exceedingly rare in humans, these so called "orphan diseases" are relatively more common in dogs. For these and other more commonplace cancers like lymphoma (Lym), dogs are an excellent translational model for human disease due to remarkably similar disease biology. In this study, assays were performed to assess the therapeutic potential of parthenolide (PTL), a known canonical nuclear factor kappa B (NF-κB) signaling inhibitor with additional mechanisms of antineoplastic activity, including alteration of cellular reduction-oxidation balance. Canine cell lines and primary cells are sensitive to PTL and undergo dose-dependent apoptosis after exposure to drug. PTL exposure also leads to glutathione depletion, reactive oxygen species generation, and NF-κB inhibition in canine cells. Standard-of-care therapeutics broadly synergize with PTL. In two canine HS cell lines, expression of NF-κB pathway signaling partners is downregulated with PTL therapy. Preliminary data suggest that PTL inhibits NF-κB activity of cells and extends survival time in a mouse model of disseminated canine HS. These data support further investigation of compounds that can antagonize canonical NF-κB pathway signaling in these cancers and pave the way for clinical trials of PTL in affected dogs. As dogs are an excellent natural disease model for these cancers, these data will ultimately improve our understanding of their human disease counterparts and hopefully improve care for both species. SIGNIFICANCE STATEMENT: Disseminated neoplasms in human and canine cancers are challenging to treat, and novel therapeutic approaches are needed to improve outcomes. Parthenolide is a promising treatment for histiocytic sarcoma, hemangiosarcoma, and mast cell neoplasia.


Subject(s)
Hemangiosarcoma , Histiocytic Sarcoma , Sesquiterpenes , Mice , Humans , Animals , Dogs , NF-kappa B/metabolism , Cell Line, Tumor , Histiocytic Sarcoma/drug therapy , Hemangiosarcoma/drug therapy , Sesquiterpenes/pharmacology , Sesquiterpenes/therapeutic use , Apoptosis
2.
Vet Pathol ; : 3009858231207021, 2023 Oct 31.
Article in English | MEDLINE | ID: mdl-37905509

ABSTRACT

Tumors in dogs and humans share many similar molecular and genetic features, incentivizing a better understanding of canine neoplasms not only for the purpose of treating companion animals, but also to facilitate research of spontaneously developing tumors with similar biologic behavior and treatment approaches in an immunologically competent animal model. Multiple tumor types of both species have similar dysregulation of signal transduction through phosphatidylinositol 3-kinase (PI3K), protein kinase B (PKB; AKT), and mechanistic target of rapamycin (mTOR), collectively known as the PI3K-AKT-mTOR pathway. This review aims to delineate the pertinent aspects of the PI3K-AKT-mTOR signaling pathway in health and in tumor development. It will then present a synopsis of current understanding of PI3K-AKT-mTOR signaling in important canine cancers and advancements in targeted inhibitors of this pathway.

3.
BMC Vet Res ; 16(1): 97, 2020 Mar 24.
Article in English | MEDLINE | ID: mdl-32209084

ABSTRACT

BACKGROUND: Lymphoma is a common cancer in dogs. While most dogs receiving chemotherapy experience remission, very few are cured, and median survival times are generally in the 12-month range. Novel approaches to treatment are unquestionably needed. The Inhibitor of Apoptosis Protein (IAP) family member survivin, which is one of the most commonly overexpressed proteins in human cancer, plays a key role in apoptosis resistance, a major cause of drug-resistant treatment failure. Survivin targeting therapies have shown promise preclinically; however, none have been evaluated in dogs to date. The goal of the current study was to determine the safety and pharmacodynamic effects of systemic administration of the anti-survivin locked nucleic acid antisense oligonucleotide EZN-3042 in dogs with lymphoma. RESULTS: We performed a prospective phase-I clinical trial in dogs with biopsy-accessible peripheral nodal lymphoma. Eighteen dogs were treated with EZN-3042 as a 2-h IV infusion at 5 dose levels, from 3.25 to 8.25 mg/kg twice weekly for 3 treatments. No dose-limiting toxicities were encountered. Reduction in tumor survivin mRNA and protein were observed in 3 of 5 evaluable dogs at the 8.25 mg/kg dose cohort. CONCLUSIONS: In conclusion, reduced survivin expression was demonstrated in lymphoma tissues in the majority of dogs treated with EZN-3042 at 8.25 mg/kg twice weekly, which was associated with minimal adverse effects. This dose may be used in future studies of EZN-3042/chemotherapy combinations in dogs with spontaneous lymphoma and other cancers.


Subject(s)
Antineoplastic Agents/therapeutic use , Dog Diseases/drug therapy , Lymphoma/veterinary , Oligonucleotides/therapeutic use , Survivin/antagonists & inhibitors , Animals , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/adverse effects , Dogs , Dose-Response Relationship, Drug , Female , Gene Expression Regulation, Neoplastic/drug effects , Lymphoma/drug therapy , Male , Oligonucleotides/administration & dosage , Oligonucleotides/adverse effects , RNA, Messenger/genetics , RNA, Messenger/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...