Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Mech Behav Biomed Mater ; 110: 103934, 2020 10.
Article in English | MEDLINE | ID: mdl-32957228

ABSTRACT

This article demonstrates our efforts in developing and evaluating all-ceramic, biodegradable composites of calcium phosphate cements (CPCs) reinforced with silver (Ag)-doped magnesium phosphate (MgP) crystals. Two primary goals of this study were to 1) enhance CPC's poor mechanical properties with micro-platelet reinforcement, and 2) impart antibacterial functionalities in composites with the aim to inhibit surgical site infections (SSI). The work embodies three novel features. First, as opposed to well-known reinforcements with whisker or fiber-like morphology, we explored micro-platelets for the first time as the strengthening phase in the CPC matrix. Second, in contrast to conventional polymeric or calcium phosphate (CaP) fibrous reinforcements, newberyite (NB, MgHPO4.3H2O) micro-platelets belonging to the less explored yet promising MgP family, were evaluated as reinforcements for the first time. Third, NB micro-platelets were doped with Ag+ ions (AgNB, Ag content: 2 wt%) for enhancing antibacterial functionalities. Results indicated that 1 wt% of AgNB micro-platelet incorporation in the CPC matrix enhanced the compressive and flexural strengths by 200% and 140% respectively as compared to the un-reinforced ones. Besides, antibacterial assays revealed effective bactericidal functionalities (>99% bacteria kill) of the AgNB reinforced CPCs against Escherichia coli. Finally, cytocompatibility studies confirmed favorable pre-osteoblast cell proliferation and differentiation in vitro. Hence, this effort was successful in developing a self-setting and injectable AgNB reinforced CPC composition with favorable mechanical and antibacterial properties.


Subject(s)
Bone Cements , Silver , Anti-Bacterial Agents/pharmacology , Blood Platelets , Calcium Phosphates , Magnesium , Magnesium Compounds , Materials Testing , Phosphates
SELECTION OF CITATIONS
SEARCH DETAIL
...