Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
2.
Int J Obes (Lond) ; 48(6): 796-807, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38396126

ABSTRACT

BACKGROUND/OBJECTIVE: Obesity increases maternal morbidity and adversely affects child health. Maternal inflammation may play a role in adverse outcomes. The objective of this study was to determine whether providing a higher dose of antioxidant micronutrients to pregnant women with obesity would raise concentrations of key antioxidant vitamins and impact inflammation and oxidative stress during pregnancy. SUBJECTS/METHODS: This was a double-blind, randomized controlled trial. We recruited pregnant women with a body mass index (BMI) ≥ 30 kg/m2 at their initial prenatal visit ( < 13 weeks gestation) and collected blood and urine samples at baseline, 24-28 weeks, and 32-36 weeks to measure micronutrient concentrations (vitamin C, E, B6 and folate), markers of inflammation (C-reactive protein, interleukin-6, 8, and 1ß) and oxidative stress (8-epi-PGF2α and malondialdehyde). We collected maternal and infant health data from enrollment to delivery as secondary outcomes. We enrolled 128 participants (64 in each arm), and 98 (49 in each arm) completed follow-up through delivery. INTERVENTION: Both groups received a standard prenatal vitamin containing the recommended daily allowance of micronutrients in pregnancy. In addition, the intervention group received a supplement with 90 mg vitamin C, 30 αTU vitamin E, 18 mg vitamin B6, and 800 µg folic acid, and the control group received a placebo. RESULTS: The intervention group had higher vit B6 (log transformed (ln), ß 24-28 weeks: 0.76 nmol/L (95% CI: 0.40, 1.12); ß 32-36 weeks: 0.52 nmol/L (95% CI: 0.17, 0.88)) than the control group. Vitamins C, E, erythrocyte RBC folate concentrations did not differ by randomization group. The intervention did not impact biomarkers of inflammation or oxidative stress. There were no differences in maternal or neonatal clinical outcomes by randomization group. CONCLUSIONS: Higher concentrations of antioxidant vitamins during pregnancy increased specific micronutrients and did not impact maternal inflammation and oxidative stress, which may be related to dosing or type of supplementation provided. CLINICAL TRIAL REGISTRATION: Clinical Trial Identification Number: NCT02802566; URL of the Registration Site: www. CLINICALTRIALS: gov .


Subject(s)
Antioxidants , Dietary Supplements , Micronutrients , Oxidative Stress , Humans , Female , Pregnancy , Double-Blind Method , Micronutrients/administration & dosage , Antioxidants/administration & dosage , Adult , Oxidative Stress/drug effects , Obesity/blood , Obesity/complications , Pregnancy Complications/blood , Pregnancy Complications/drug therapy , Biomarkers/blood
3.
Front Nutr ; 10: 1230061, 2023.
Article in English | MEDLINE | ID: mdl-37899826

ABSTRACT

Introduction: The safety of novel forms of iron in healthy, iron-replete adults as might occur if used in population-based iron supplementation programs was examined. We tested the hypotheses that supplementation with nanoparticulate iron hydroxide adipate tartrate (IHAT), an iron-enriched Aspergillus oryzae product (ASP), or ferrous sulphate heptahydrate (FS) are safe as indicated by erythrocyte susceptibility to malarial infection, bacterial proliferation, and gut inflammation. Responses to FS administered daily or weekly, and with or without other micronutrients were compared. Methods: Two phases of randomized, double-blinded trials were conducted in Boston, MA. Phase I randomized 160 volunteers to six treatments: placebo, IHAT, ASP, FS, and FS plus a micronutrient powder (MNP) administrated daily at 60 mg Fe/day; and FS administered as a single weekly dose of 420 mg Fe. Phase II randomized 86 volunteers to IHAT, ASP, or FS administered at 120 mg Fe/day. Completing these phases were 151 and 77 participants, respectively. The study was powered to detect effects on primary endpoints: susceptibility of participant erythrocytes to infection by Plasmodium falciparum, the proliferation potential of selected pathogenic bacteria in sera, and markers of gut inflammation. Secondary endpoints for which the study was not powered included indicators of iron status and gastrointestinal symptoms. Results: Supplementation with any form of iron did not affect any primary endpoint. In Phase I, the frequency of gastrointestinal symptoms associated with FS was unaffected by dosing with MNP or weekly administration; but participants taking IHAT more frequently reported abdominal pain (27%, p < 0.008) and nausea (4%, p = 0.009) than those taking FS, while those taking ASP more frequently reported nausea (8%, p = 0.009). Surprisingly, only 9% of participants taking IHAT at 120 mg Fe/day (Phase II) reported abdominal pain and no other group reported that symptom. Discussion: With respect to the primary endpoints, few differences were found when comparing these forms of iron, indicating that 28 days of 60 or 120 mg/day of IHAT, ASP, or FS may be safe for healthy, iron-replete adults. With respect to other endpoints, subjects receiving IHAT more frequently reported abdominal pain and nausea, suggesting the need for further study. Clinical Trial Registration: ClinicalTrials.gov, NCT03212677; registered: 11 July 2017.

4.
BMJ Nutr Prev Health ; 6(2): 392-401, 2023.
Article in English | MEDLINE | ID: mdl-38618551

ABSTRACT

The importance of self-care to improve health and social well-being is well recognised. Nevertheless, there remains a need to encourage people to better understand how their body works, and how to keep it healthy. Because of its important role, part of this understanding should be based on why the immune system must be supported. This highly complex system is essential for defending against pathogens, but also for maintaining health throughout the body by preserving homeostasis and integrity. Accordingly, the immune system requires active management for optimal functioning and to reduce the risk of chronic diseases. In addition to regular exercise, healthy sleeping patterns, cultivating mental resilience, adequate nutrition through healthy and diverse dietary habits is key to the daily support of immune function. Diet and the immune system are closely intertwined, and a poor diet will impair immunity and increase the risk of acute and chronic diseases. To help elucidate the roles of primary healthcare providers in supporting individuals to engage in self-care, an international group of experts reviewed the evidence for the roles of the immune system in maintaining health and for nutrition in daily immune support, and discussed implications for population health and clinical practice.

5.
Adv Nutr ; 13(5): S1-S26, 2022 10 02.
Article in English | MEDLINE | ID: mdl-36183242

ABSTRACT

The immune system is key to host defense against pathogenic organisms. Aging is associated with changes in the immune system, with a decline in protective components (immunosenescence), increasing susceptibility to infectious disease, and a chronic elevation in low-grade inflammation (inflammaging), increasing the risk of multiple noncommunicable diseases. Nutrition is a determinant of immune cell function and of the gut microbiota. In turn, the gut microbiota shapes and controls the immune and inflammatory responses. Many older people show changes in the gut microbiota. Age-related changes in immune competence, low-grade inflammation, and gut dysbiosis may be interlinked and may relate, at least in part, to age-related changes in nutrition. A number of micronutrients (vitamins C, D, and E and zinc and selenium) play roles in supporting the function of many immune cell types. Some trials report that providing these micronutrients as individual supplements can reverse immune deficits in older people and/or in those with insufficient intakes. There is inconsistent evidence that this will reduce the risk or severity of infections including respiratory infections. Probiotic, prebiotic, or synbiotic strategies that modulate the gut microbiota, especially by promoting the colonization of lactobacilli and bifidobacteria, have been demonstrated to modulate some immune and inflammatory biomarkers in older people and, in some cases, to reduce the risk and severity of gastrointestinal and respiratory infections, although, again, the evidence is inconsistent. Further research with well-designed and well-powered trials in at-risk older populations is required to be more certain about the role of micronutrients and of strategies that modify the gut microbiota-host relationship in protecting against infection, especially respiratory infection.


Subject(s)
Communicable Diseases , Gastrointestinal Microbiome , Immunosenescence , Respiratory Tract Infections , Selenium , Aged , Humans , Inflammation , Micronutrients/metabolism , Vitamins , Zinc
6.
Adv Nutr ; 13(5): 1415-1430, 2022 10 02.
Article in English | MEDLINE | ID: mdl-35587877

ABSTRACT

The immune system is weakened by advancing age, often referred to as immunosenescence, increasing the vulnerability to, and frequently the severity of, infectious diseases in older people. This has become very apparent in the current coronavirus disease 2019 (COVID-19) pandemic for which older people are at higher risk of severe outcomes, even those who are fully vaccinated. Aging affects both the innate and adaptive immune systems and is characterized by an imbalanced inflammatory response. Increasing evidence shows that optimal status of nutrients such as vitamins C, D, and E and selenium and zinc as well as the omega-3 (n-3) fatty acids DHA and EPA can help compensate for these age-related changes. While inadequate intakes of these nutrients are widespread in the general population, this is often more pronounced in older people. Maintaining adequate intakes is a challenge for them due to a range of factors such as physical, physiological, and cognitive changes; altered absorption; and the presence of noncommunicable diseases. While nutritional requirements are ideally covered by a balanced diet, this can be difficult to achieve, particularly for older people. Fortified foods and nutritional complements are effective in achieving adequate micronutrient intakes and should be considered as a safe and cost-effective means for older people to improve their nutritional status and hence support their defense against infections. Complementing the diet with a combination of micronutrients, particularly those playing a key role in the immune system such as vitamins C, D, and E and selenium and zinc as well as DHA and EPA, is recommended for older people. Optimal nutrition to support the immune system in older people will remain essential, particularly in the face of the current COVID-19 pandemic and, thus, developing strategies to ensure adequate nutrition for the growing number of older adults will be an important and cost-effective investment in the future.


Subject(s)
COVID-19 , Fatty Acids, Omega-3 , Selenium , Aged , Ascorbic Acid , Humans , Micronutrients , Pandemics , Vitamins , Zinc/therapeutic use
7.
Infect Immun ; 89(8): e0047120, 2021 07 15.
Article in English | MEDLINE | ID: mdl-34031128

ABSTRACT

Streptococcus pneumoniae (pneumococcus) resides asymptomatically in the nasopharynx (NP) but can progress from benign colonizer to lethal pulmonary or systemic pathogen. Both viral infection and aging are risk factors for serious pneumococcal infections. Previous work established a murine model that featured the movement of pneumococcus from the nasopharynx to the lung upon nasopharyngeal inoculation with influenza A virus (IAV) but did not fully recapitulate the severe disease associated with human coinfection. We built upon this model by first establishing pneumococcal nasopharyngeal colonization, then inoculating both the nasopharynx and lungs with IAV. In young (2-month-old) mice, coinfection triggered bacterial dispersal from the nasopharynx into the lungs, pulmonary inflammation, disease, and mortality in a fraction of mice. In aged mice (18 to 24 months), coinfection resulted in earlier and more severe disease. Aging was not associated with greater bacterial burdens but rather with more rapid pulmonary inflammation and damage. Both aging and IAV infection led to inefficient bacterial killing by neutrophils ex vivo. Conversely, aging and pneumococcal colonization also blunted alpha interferon (IFN-α) production and increased pulmonary IAV burden. Thus, in this multistep model, IAV promotes pneumococcal pathogenicity by modifying bacterial behavior in the nasopharynx, diminishing neutrophil function, and enhancing bacterial growth in the lung, while pneumococci increase IAV burden, likely by compromising a key antiviral response. Thus, this model provides a means to elucidate factors, such as age and coinfection, that promote the evolution of S. pneumoniae from asymptomatic colonizer to invasive pathogen, as well as to investigate consequences of this transition on antiviral defense.


Subject(s)
Aging , Coinfection , Host-Pathogen Interactions , Pneumococcal Infections/etiology , Streptococcus pneumoniae/pathogenicity , Virus Diseases/virology , Age Factors , Aging/immunology , Animals , Disease Models, Animal , Disease Susceptibility , Host-Pathogen Interactions/immunology , Influenza A virus , Mice , Orthomyxoviridae Infections/virology , Virulence , Virus Diseases/immunology
8.
Proc Natl Acad Sci U S A ; 117(52): 33561-33569, 2020 12 29.
Article in English | MEDLINE | ID: mdl-33376222

ABSTRACT

Streptococcus pneumoniae is a leading cause of pneumonia and invasive disease, particularly, in the elderly. S. pneumoniae lung infection of aged mice is associated with high bacterial burdens and detrimental inflammatory responses. Macrophages can clear microorganisms and modulate inflammation through two distinct lysosomal trafficking pathways that involve 1A/1B-light chain 3 (LC3)-marked organelles, canonical autophagy, and LC3-associated phagocytosis (LAP). The S. pneumoniae pore-forming toxin pneumolysin (PLY) triggers an autophagic response in nonphagocytic cells, but the role of LAP in macrophage defense against S. pneumoniae or in age-related susceptibility to infection is unexplored. We found that infection of murine bone-marrow-derived macrophages (BMDMs) by PLY-producing S. pneumoniae triggered Atg5- and Atg7-dependent recruitment of LC3 to S. pneumoniae-containing vesicles. The association of LC3 with S. pneumoniae-containing phagosomes required components specific for LAP, such as Rubicon and the NADPH oxidase, but not factors, such as Ulk1, FIP200, or Atg14, required specifically for canonical autophagy. In addition, S. pneumoniae was sequestered within single-membrane compartments indicative of LAP. Importantly, compared to BMDMs from young (2-mo-old) mice, BMDMs from aged (20- to 22-mo-old) mice infected with S. pneumoniae were not only deficient in LAP and bacterial killing, but also produced higher levels of proinflammatory cytokines. Inhibition of LAP enhanced S. pneumoniae survival and cytokine responses in BMDMs from young but not aged mice. Thus, LAP is an important innate immune defense employed by BMDMs to control S. pneumoniae infection and concomitant inflammation, one that diminishes with age and may contribute to age-related susceptibility to this important pathogen.


Subject(s)
Aging/immunology , Host-Pathogen Interactions/immunology , Macrophages/metabolism , Macrophages/microbiology , Microtubule-Associated Proteins/metabolism , Phagocytosis , Streptococcus pneumoniae/immunology , Animals , Autophagy , Bacterial Proteins/metabolism , Lipids/chemistry , Macrophages/ultrastructure , Male , Mice , Mice, Inbred C57BL , Microbial Viability , RAW 264.7 Cells , Reactive Oxygen Species/metabolism , Streptococcus pneumoniae/ultrastructure , Streptolysins/metabolism
9.
J Nutr ; 150(11): 2950-2960, 2020 11 19.
Article in English | MEDLINE | ID: mdl-32939550

ABSTRACT

BACKGROUND: Epidemiological studies suggest that higher fruits and vegetables (F&V) consumption correlates with reduced risk of hepatic steatosis, yet evidence for causality and the underlying mechanisms is lacking. OBJECTIVES: We aimed to determine the causal relation between F&V consumption and improved metabolic disorders in mice fed high-fat (HF) (Experiment-1) or normal-fat (Experiment-2) diets and its underlying mechanisms. METHODS: Six-week-old male C57BL/6J mice were randomly grouped and fed diets supplemented at 0%-15% (wt:wt) with a freeze-dried powder composed of 24 commonly consumed F&V (human equivalent of 0-9 servings/d) for 20 wk. In Experiment-1, mice were fed an HF (45% kcal fat) diet with 0% (HF0), 5%, 10%, or 15% (HF15) F&V or a matched low-fat control diet (10% kcal fat). In Experiment-2, mice were fed an AIN-93 diet (basal) (B, 16% kcal fat) with 0% (B0), 5%, 10%, or 15% (B15) F&V supplementation. Body weight and composition, food intake, hepatic steatosis, inflammation, ceramide levels, sphingomyelinase activity, and gut microbiota were assessed. RESULTS: In Experiment-1, mice fed the HF15 diet had lower weight gain (17.9%), hepatic steatosis (48.4%), adipose tissue inflammation, blood (24.6%) and liver (33.9%) ceramide concentrations, and sphingomyelinase activity (38.8%) than HF0 mice (P < 0.05 for all). In Experiment-2, mice fed the B15 diet had no significant changes in weight gain but showed less hepatic steatosis (28.5%), blood and adipose tissue inflammation, and lower blood (30.0%) ceramide concentrations than B0 mice (P < 0.05 for all). These F&V effects were associated with favorable microbiota changes. CONCLUSIONS: These findings represent the first evidence for a causal role of high F&V intake in mitigating hepatic steatosis in mice. These beneficial effects may be mediated through changes in ceramide and/or gut microbiota, and suggest that higher than currently recommended servings of F&V may be needed to achieve maximum health benefits.


Subject(s)
Diet, High-Fat/adverse effects , Fatty Liver/prevention & control , Fruit , Metabolic Diseases/etiology , Vegetables , Animal Feed , Animals , Ceramides/metabolism , Gene Expression Regulation/drug effects , Liver/metabolism , Male , Mice , Mice, Inbred C57BL , Random Allocation , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism , Weight Gain
10.
Gates Open Res ; 3: 1510, 2019.
Article in English | MEDLINE | ID: mdl-33655197

ABSTRACT

The forms of iron currently available to correct iron deficiency have adverse effects, including infectious diarrhea, increased susceptibility to malaria, inflammation and detrimental changes to the gut microbiome. These adverse effects limit their use such that the growing burden of iron deficiency has not abated in recent decades. Here, we summarize the protocol of the "Safe Iron Study", the first clinical study examining the safety and efficacy of novel forms of iron in healthy, iron-replete adults. The Safe Iron Study is a double-blind, randomized, placebo-controlled trial conducted in Boston, MA, USA. This study compares ferrous sulfate heptahydrate (FeSO 4·H 2O) with two novel forms of iron supplements (iron hydroxide adipate tartrate (IHAT) and organic fungal iron metabolite (Aspiron™ Natural Koji Iron)). In Phase I, we will compare each source of iron administrated at a low dose (60 mg Fe/day). We will also determine the effect of FeSO 4 co-administrated with a multiple micronutrient powder and weekly administration of FeSO 4. The forms of iron found to produce no adverse effects, or adverse effects no greater than FeSO 4 in Phase I, Phase II will evaluate a higher, i.e., a therapeutic dose (120 mg Fe/day). The primary outcomes of this study include ex vivo malaria ( Plasmodium falciparum) infectivity of host erythrocytes, ex vivo bacterial proliferation (of selected species) in presence of host plasma and intestinal inflammation assessed by fecal calprotectin. This study will test the hypotheses that the novel forms of iron, administered at equivalent doses to FeSO 4, will produce similar increases in iron status in iron-replete subjects, yet lower increases in ex vivo malaria infectivity, ex vivo bacterial proliferation, gut inflammation. Ultimately, this study seeks to contribute to development of safe and effective forms of supplemental iron to address the global burden of iron deficiency and anemia. Registration: ClinicalTrials.gov identifier: NCT03212677; registered: 11 July 2017.

11.
Br J Nutr ; 119(12): 1393-1399, 2018 06.
Article in English | MEDLINE | ID: mdl-29845904

ABSTRACT

Blueberry, rich in antioxidant and anti-inflammatory phytochemicals, has been demonstrated to lower inflammatory status in adipose induced by high-fat diet (HFD) and obesity. The effect of blueberry on systemic immune functions has not been examined. C57BL/6 mice were randomised to one of three diets - low-fat diet (LFD), HFD and HFD plus 4 % (w/w) blueberry (HFD+B) - for 8 or 12 weeks. Ex vivo T-cell mitogens (concanavalin A (Con A); phytohaemagglutinin), T-cell antibody (anti-CD3; anti-CD3/CD28)-stimulated T-cell proliferation and cytokine production were assessed. After 8 weeks, both HFD groups weighed more (>4 g) than the LFD group; after 12 weeks, HFD+B-fed mice weighed more (>6 g) and had 41 % more adipose tissue than HFD-fed mice (P<0·05). After 12 weeks, T-cell proliferation was less in both HFD groups, compared with the LFD group. HFD-associated decrements in T-cell proliferation were partially (10-50 %) prevented by blueberry supplementation. At 12 weeks, splenocytes from HFD mice, but not from HFD+B mice, produced 51 % less IL-4 (CD3/CD28) and 57 % less interferon-γ (Con A) compared with splenocytes from LFD mice (P<0·05). In response to lipopolysaccharide challenge, splenocytes from both HFD groups produced 24-30 % less IL-6 and 27-33 % less TNF-α compared with splenocytes from LFD mice (P<0·05), indicating impaired acute innate immune response. By demonstrating deleterious impacts of HFD feeding on T-cell proliferation and splenocyte immune responses, our results provide insights into how HFD/obesity can disrupt systemic immune function. The protective effects of blueberry suggest that dietary blueberry can buttress T-cell and systemic immune function against HFD-obesity-associated insults.


Subject(s)
Blueberry Plants , Dietary Supplements , Obesity/diet therapy , Obesity/immunology , T-Lymphocytes/immunology , Adiposity , Animals , Anti-Inflammatory Agents, Non-Steroidal/administration & dosage , Cell Proliferation , Cytokines/biosynthesis , Diet, Fat-Restricted , Diet, High-Fat/adverse effects , Immunity, Cellular , Immunosuppressive Agents/administration & dosage , Male , Mice , Mice, Inbred C57BL , Obesity/etiology , T-Lymphocytes/pathology , Weight Gain
12.
Am J Clin Nutr ; 106(3): 947-948, 2017 09.
Article in English | MEDLINE | ID: mdl-28864576

Subject(s)
Vitamins , Whole Grains
13.
Am J Clin Nutr ; 106(4): 1052-1061, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28814395

ABSTRACT

Background: Emerging evidence suggests novel roles for bacterially derived vitamin K forms known as menaquinones in health and disease, which may be attributable in part to anti-inflammatory effects. However, the relevance of menaquinones produced by gut bacteria to vitamin K requirements and inflammation is undetermined.Objective: This study aimed to quantify fecal menaquinone concentrations and identify associations between fecal menaquinone concentrations and serum vitamin K concentrations, gut microbiota composition, and inflammation.Design: Fecal and serum menaquinone concentrations, fecal microbiota composition, and plasma and fecal cytokine concentrations were measured in 80 men and postmenopausal women (48 men, 32 women, age 40-65 y) enrolled in a randomized, parallel-arm, provided-food trial. After consuming a run-in diet for 2 wk, participants were randomly assigned to consume a whole grain-rich (WG) or a refined grain-based (RG) diet for 6 wk. Outcomes were measured at weeks 2 and 8.Results: The median total daily excretion of menaquinones in feces was 850 nmol/d but was highly variable (range: 64-5358 nmol/d). The total median (IQR) fecal concentrations of menaquinones decreased in the WG diet compared with the RG diet [-6.8 nmol/g (13.0 nmol/g) dry weight for WG compared with 1.8 nmol/g (12.3 nmol/g) dry weight for RG; P < 0.01)]. However, interindividual variability in fecal menaquinone concentrations partitioned individuals into 2 distinct groups based on interindividual differences in concentrations of different menaquinone forms rather than the diet group or the time point. The relative abundances of several gut bacteria taxa, Bacteroides and Prevotella in particular, differed between these groups, and 42% of identified genera were associated with ≥1 menaquinone form. Menaquinones were not detected in serum, and neither fecal concentrations of individual menaquinones nor the menaquinone group was associated with any marker of inflammation.Conclusion: Menaquinone concentrations in the human gut appear highly variable and are associated with gut microbiota composition. However, the health implications remain unclear. This trial was registered at clinicaltrials.gov as NCT01902394.


Subject(s)
Cytokines/blood , Diet , Feces/chemistry , Gastrointestinal Microbiome , Intestinal Mucosa/metabolism , Vitamin K 2/metabolism , Whole Grains , Bacteria/growth & development , Bacteria/metabolism , Cytokines/metabolism , Feces/microbiology , Feeding Behavior , Female , Food Handling , Humans , Inflammation/blood , Intestines/microbiology , Male , Middle Aged , Nutritional Requirements , Vitamin K/metabolism , Vitamin K 2/blood
14.
Article in English | MEDLINE | ID: mdl-28516066

ABSTRACT

Despite the availability of vaccines, Streptococcus pneumoniae remains a leading cause of life-threatening infections, such as pneumonia, bacteremia and meningitis. Polymorphonuclear leukocytes (PMNs) are a key determinant of disease course, because optimal host defense requires an initial robust pulmonary PMN response to control bacterial numbers followed by modulation of this response later in infection. The elderly, who manifest a general decline in immune function and higher basal levels of inflammation, are at increased risk of developing pneumococcal pneumonia. Using an aged mouse infection model, we previously showed that oral supplementation with the alpha-tocopherol form of vitamin E (α-Toc) decreases pulmonary inflammation, in part by modulating neutrophil migration across lung epithelium into alveolar spaces, and reverses the age-associated decline in resistance to pneumococcal pneumonia. The objective of this study was to test the effect of α-Toc on the ability of neutrophils isolated from young (22-35 years) or elderly (65-69 years) individuals to migrate across epithelial cell monolayers in response to S. pneumoniae and to kill complement-opsonized pneumococci. We found that basal levels of pneumococcal-induced transepithelial migration by PMNs from young or elderly donors were indistinguishable, suggesting that the age-associated exacerbation of pulmonary inflammation is not due to intrinsic properties of PMNs of elderly individuals but rather may reflect the inflammatory milieu of the aged lung. Consistent with its anti-inflammatory activity, α-Toc treatment diminished PMN migration regardless of donor age. Unexpectedly, unlike previous studies showing poor killing of antibody-opsonized bacteria, we found that PMNs of elderly donors were more efficient at killing complement-opsonized bacteria ex vivo than their younger counterparts. We also found that the heightened antimicrobial activity in PMNs from older donors correlated with increased activity of neutrophil elastase, a serine protease that is required to kill pneumococci. Notably, incubation with α-Toc increased PMN elastase activity from young donors and boosted their ability to kill complement-opsonized pneumococci. These findings demonstrate that α-Toc is a potent modulator of PMN responses and is a potential nutritional intervention to combat pneumococcal infection.


Subject(s)
Leukocyte Elastase/drug effects , Neutrophils/drug effects , Neutrophils/immunology , Neutrophils/metabolism , Pneumonia, Pneumococcal/immunology , Streptococcus pneumoniae/immunology , alpha-Tocopherol/pharmacology , Administration, Oral , Adult , Age Factors , Aged , Animals , Anti-Infective Agents/pharmacology , Cathepsin G/drug effects , Cell Movement/drug effects , Cell Movement/immunology , Disease Models, Animal , Epithelium/immunology , Epithelium/microbiology , Humans , Inflammation/immunology , Lung/immunology , Lung/microbiology , Mice , Phagocytosis , Pneumonia, Pneumococcal/microbiology , Serine Proteases/drug effects , Streptococcus pneumoniae/pathogenicity , Vitamin E/chemistry , alpha-Tocopherol/administration & dosage , alpha-Tocopherol/chemistry
15.
Exerc Immunol Rev ; 23: 8-50, 2017.
Article in English | MEDLINE | ID: mdl-28224969

ABSTRACT

In this consensus statement on immunonutrition and exercise, a panel of knowledgeable contributors from across the globe provides a consensus of updated science, including the background, the aspects for which a consensus actually exists, the controversies and, when possible, suggested directions for future research.


Subject(s)
Exercise , Immune System/physiology , Sports Nutritional Physiological Phenomena , Amino Acids/immunology , Biomarkers , Dietary Carbohydrates/immunology , Fatty Acids/immunology , Humans , Inflammation/immunology , Nutritional Requirements
16.
Am J Clin Nutr ; 105(3): 589-599, 2017 03.
Article in English | MEDLINE | ID: mdl-28179223

ABSTRACT

Background: The effect of whole grains on the regulation of energy balance remains controversial.Objective: We aimed to determine the effects of substituting whole grains for refined grains, independent of body weight changes, on energy-metabolism metrics and glycemic control.Design: The study was a randomized, controlled, parallel-arm controlled-feeding trial that was conducted in 81 men and postmenopausal women [49 men and 32 women; age range: 40-65 y; body mass index (in kg/m2): <35.0]. After a 2-wk run-in period, participants were randomly assigned to consume 1 of 2 weight-maintenance diets for 6 wk. Diets differed in whole-grain and fiber contents [mean ± SDs: whole grain-rich diet: 207 ± 39 g whole grains plus 40 ± 5 g dietary fiber/d; refined grain-based diet: 0 g whole grains plus 21 ± 3 g dietary fiber/d] but were otherwise similar. Energy metabolism and body-composition metrics, appetite, markers of glycemic control, and gut microbiota were measured at 2 and 8 wk.Results: By design, body weight was maintained in both groups. Plasma alkylresorcinols, which are biomarkers of whole-grain intake, increased in the whole grain-rich diet group (WG) but not in the refined grain-based diet group (RG) (P-diet-by-time interaction < 0.0001). Beta ± SE changes (ΔWG compared with ΔRG) in the resting metabolic rate (RMR) (43 ± 25 kcal/d; P = 0.04), stool weight (76 ± 12 g/d; P < 0.0001), and stool energy content (57 ± 17 kcal/d; P = 0.003), but not in stool energy density, were higher in the WG. When combined, the favorable energetic effects in the WG translated into a 92-kcal/d (95% CI: 28, 156-kcal/d) higher net daily energy loss compared with that of the RG (P = 0.005). Prospective consumption (P = 0.07) and glycemia after an oral-glucose-tolerance test (P = 0.10) trended toward being lower in the WG than in the RG. When nonadherent participants were excluded, between-group differences in stool energy content and glucose tolerance increased, and between-group differences in the RMR and prospective consumption were not statistically significant.Conclusion: These findings suggest positive effects of whole grains on the RMR and stool energy excretion that favorably influence energy balance and may help explain epidemiologic associations between whole-grain consumption and reduced body weight and adiposity. This trial was registered at clinicaltrials.gov as NCT01902394.


Subject(s)
Diet , Dietary Fiber/pharmacology , Energy Metabolism , Feeding Behavior , Whole Grains , Adiposity , Blood Glucose/metabolism , Dietary Fiber/therapeutic use , Energy Intake , Feces , Female , Glucose Tolerance Test , Humans , Male , Middle Aged , Obesity/diet therapy , Postmenopause , Resorcinols/blood
17.
Adv Nutr ; 8(1): 17-26, 2017 01.
Article in English | MEDLINE | ID: mdl-28096124

ABSTRACT

A projected doubling in the global population of people aged ≥60 y by the year 2050 has major health and economic implications, especially in developing regions. Burdens of unhealthy aging associated with chronic noncommunicable and other age-related diseases may be largely preventable with lifestyle modification, including diet. However, as adults age they become at risk of "nutritional frailty," which can compromise their ability to meet nutritional requirements at a time when specific nutrient needs may be high. This review highlights the role of nutrition science in promoting healthy aging and in improving the prognosis in cases of age-related diseases. It serves to identify key knowledge gaps and implementation challenges to support adequate nutrition for healthy aging, including applicability of metrics used in body-composition and diet adequacy for older adults and mechanisms to reduce nutritional frailty and to promote diet resilience. This review also discusses management recommendations for several leading chronic conditions common in aging populations, including cognitive decline and dementia, sarcopenia, and compromised immunity to infectious disease. The role of health systems in incorporating nutrition care routinely for those aged ≥60 y and living independently and current actions to address nutritional status before hospitalization and the development of disease are discussed.


Subject(s)
Aging , Diet , Health Behavior , Nutritional Requirements , Alzheimer Disease/diet therapy , Alzheimer Disease/prevention & control , Chronic Disease , Communicable Diseases/diet therapy , Humans , Life Style , Nutrition Assessment , Observational Studies as Topic , Prognosis , Randomized Controlled Trials as Topic , Sarcopenia/diet therapy , Sarcopenia/prevention & control
18.
Aging (Albany NY) ; 8(7): 1416-31, 2016 07.
Article in English | MEDLINE | ID: mdl-27410480

ABSTRACT

Calorie restriction (CR) inhibits inflammation and slows aging in many animal species, but in rodents housed in pathogen-free facilities, CR impairs immunity against certain pathogens. However, little is known about the effects of long-term moderate CR on immune function in humans. In this multi-center, randomized clinical trial to determine CR's effect on inflammation and cell-mediated immunity, 218 healthy non-obese adults (20-50 y), were assigned 25% CR (n=143) or an ad-libitum (AL) diet (n=75), and outcomes tested at baseline, 12, and 24 months of CR. CR induced a 10.4% weight loss over the 2-y period. Relative to AL group, CR reduced circulating inflammatory markers, including total WBC and lymphocyte counts, ICAM-1 and leptin. Serum CRP and TNF-α concentrations were about 40% and 50% lower in CR group, respectively. CR had no effect on the delayed-type hypersensitivity skin response or antibody response to vaccines, nor did it cause difference in clinically significant infections. In conclusion, long-term moderate CR without malnutrition induces a significant and persistent inhibition of inflammation without impairing key in vivo indicators of cell-mediated immunity. Given the established role of these pro-inflammatory molecules in the pathogenesis of multiple chronic diseases, these CR-induced adaptations suggest a shift toward a healthy phenotype.


Subject(s)
Body Composition/physiology , Caloric Restriction , Diet , Inflammation/diet therapy , Adult , Biomarkers/blood , C-Reactive Protein/metabolism , Energy Intake , Female , Humans , Inflammation/blood , Intercellular Adhesion Molecule-1/blood , Leptin/blood , Lymphocyte Count , Male , Middle Aged , Treatment Outcome , Tumor Necrosis Factor-alpha/blood
19.
Am J Clin Nutr ; 103(3): 942-51, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26817502

ABSTRACT

BACKGROUND: Zinc is essential for the regulation of immune response. T cell function declines with age. Zinc supplementation has the potential to improve the serum zinc concentrations and immunity of nursing home elderly with a low serum zinc concentration. OBJECTIVE: We aimed to determine the effect of supplementation with 30 mg Zn/d for 3 mo on serum zinc concentrations of zinc-deficient nursing home elderly. DESIGN: This was a randomized, double-blind, placebo-controlled study. Of 53 nursing home elderly (aged ≥65 y) who met eligibility criteria, 58% had a low serum zinc concentration (serum zinc <70 µg/dL); these 31 were randomly assigned to zinc (30 mg Zn/d) (n = 16) or placebo (5 mg Zn/d) (n = 15) groups. The primary outcome measure was change in serum zinc concentrations between baseline and month 3. We also explored the effects of supplementation on immune response. RESULTS: Baseline characteristics were similar in the 2 groups. The difference in the mean change in serum zinc was significantly higher, by 16%, in the zinc group than in the placebo group (P = 0.007) when baseline zinc concentrations were controlled for. In addition, controlling for baseline C-reactive protein, copper, or albumin did not change the results. However, supplementation of participants with ≤60 µg serum Zn/dL failed to increase their serum zinc to ≥70 µg/dL. Zinc supplementation also significantly increased anti-CD3/CD28 and phytohemagglutinin-stimulated T cell proliferation, and the number of peripheral T cells (P < 0.05). When proliferation was expressed per number of T cells, the significant differences between groups were lost, suggesting that the zinc-induced enhancement of T cell proliferation was mainly due to an increase in the number of T cells. CONCLUSIONS: Zinc supplementation at 30 mg/d for 3 mo is effective in increasing serum zinc concentrations in nursing home elderly; however, not all zinc-deficient elderly reached adequate concentrations. The increase in serum zinc concentration was associated with the enhancement of T cell function mainly because of an increase in the number of T cells.


Subject(s)
Aging , Cell Proliferation/drug effects , Dietary Supplements , Lymphocyte Activation/drug effects , T-Lymphocytes/metabolism , Trace Elements/pharmacology , Zinc/pharmacology , Aged , Aged, 80 and over , Aging/blood , Aging/immunology , Deficiency Diseases/blood , Deficiency Diseases/prevention & control , Double-Blind Method , Female , Homes for the Aged , Humans , Male , Nursing Homes , Trace Elements/blood , Trace Elements/deficiency , Trace Elements/therapeutic use , Zinc/blood , Zinc/deficiency , Zinc/therapeutic use
20.
Aging Cell ; 15(1): 22-7, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26443692

ABSTRACT

Young-onset calorie restriction (CR) in rodents decreases serum IGF-1 concentration and increases serum corticosterone levels, which have been hypothesized to play major roles in mediating its anticancer and anti-aging effects. However, little is known on the effects of CR on the IGF-1 system and cortisol in humans. To test the sustained effects of CR on these key hormonal adaptations, we performed a multicenter randomized trial of a 2-year 25% CR intervention in 218 nonobese (body mass index between 22 and 27.8 kg m(-2) ) young and middle-aged (20-50 years age range) men and women. Average CR during the first 6 months was 19.5 ± 0.8% and 9.1 ± 0.7% over the next 18 months of the study. Weight loss averaged 7.6 ± 0.3 kg over the 2-years period of which 71% was fat mass loss (P < 0.0001). Average CR during the CR caused a significant 21% increase in serum IGFBP-1 and a 42% reduction in IGF-1:IGFBP-1 ratio at 2 years (P < 0.008), but did not change IGF-1 and IGF-1:IGFBP-3 ratio levels. Serum cortisol concentrations were slightly but significantly increased by CR at 1 year only (P = 0.003). Calorie restriction had no effect on serum concentrations of PDGF-AB and TGFß-1. We conclude, on the basis of the present and previous findings, that, in contrast to rodents, humans do not respond to CR with a decrease in serum IGF-1 concentration or with a sustained and biological relevant increase in serum cortisol. However, long-term CR in humans significantly and persistently increases serum IGFBP-1 concentration.


Subject(s)
Aging/physiology , Caloric Restriction , Energy Intake/physiology , Hydrocortisone/metabolism , Insulin-Like Growth Factor Binding Proteins/metabolism , Insulin-Like Growth Factor I/metabolism , Adult , Blood Glucose/metabolism , Body Mass Index , Female , Humans , Insulin-Like Growth Factor Binding Protein 1/blood , Male , Middle Aged , Sex Characteristics , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...