Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Protein Sci ; 19(7): 1327-36, 2010 Jul.
Article in English | MEDLINE | ID: mdl-20506268

ABSTRACT

The hepatitis C virus (HCV) nonstructural (NS) protein 4B is known for protein-protein interactions with virus and host cell factors. Only little is known about the corresponding protein binding sites and underlying molecular mechanisms. Recently, we have predicted a putative basic leucine zipper (bZIP) motif within the aminoterminal part of NS4B. The aim of this study was to investigate the importance of this NS4B bZIP motif for specific protein-protein interactions. We applied in silico approaches for 3D-structure modeling of NS4B-homodimerization via the bZIP motif and identified crucial amino acid positions by multiple sequence analysis. The selected sites were used for site-directed mutagenesis within the NS4B bZIP motif and subsequent co-immunoprecipitation of wild-type and mutant NS4B molecules. Respective interaction energies were calculated for wild-type and mutant structural models. NS4B-homodimerization with a gradual alleviation of dimer interaction from wild-type towards the mutant-dimers was observed. The putative bZIP motif was confirmed by a co-immunoprecipitation assay and western blot analysis. NS4B-NS4B interaction depends on the integrity of the bZIP hydrophobic core and can be abolished due to changes of crucial residues within NS4B. In conclusion, our data indicate NS4B-homodimerization and that this interaction is facilitated by the aminoterminal part containing a bZIP motif.


Subject(s)
Viral Nonstructural Proteins/chemistry , Viral Nonstructural Proteins/metabolism , Amino Acid Sequence , Immunoprecipitation , Leucine Zippers/physiology , Molecular Sequence Data , Protein Binding , Protein Multimerization/genetics , Protein Multimerization/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...