Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Rev Fish Biol Fish ; 32(1): 123-143, 2022.
Article in English | MEDLINE | ID: mdl-33589856

ABSTRACT

Improved public understanding of the ocean and the importance of sustainable ocean use, or ocean literacy, is essential for achieving global commitments to sustainable development by 2030 and beyond. However, growing human populations (particularly in mega-cities), urbanisation and socio-economic disparity threaten opportunities for people to engage and connect directly with ocean environments. Thus, a major challenge in engaging the whole of society in achieving ocean sustainability by 2030 is to develop strategies to improve societal connections to the ocean. The concept of ocean literacy reflects public understanding of the ocean, but is also an indication of connections to, and attitudes and behaviours towards, the ocean. Improving and progressing global ocean literacy has potential to catalyse the behaviour changes necessary for achieving a sustainable future. As part of the Future Seas project (https://futureseas2030.org/), this paper aims to synthesise knowledge and perspectives on ocean literacy from a range of disciplines, including but not exclusive to marine biology, socio-ecology, philosophy, technology, psychology, oceanography and human health. Using examples from the literature, we outline the potential for positive change towards a sustainable future based on knowledge that already exists. We focus on four drivers that can influence and improve ocean literacy and societal connections to the ocean: (1) education, (2) cultural connections, (3) technological developments, and (4) knowledge exchange and science-policy interconnections. We explore how each driver plays a role in improving perceptions of the ocean to engender more widespread societal support for effective ocean management and conservation. In doing so, we develop an ocean literacy toolkit, a practical resource for enhancing ocean connections across a broad range of contexts worldwide.

2.
Rev Fish Biol Fish ; 32(1): 39-63, 2022.
Article in English | MEDLINE | ID: mdl-34566277

ABSTRACT

Proactive and coordinated action to mitigate and adapt to climate change will be essential for achieving the healthy, resilient, safe, sustainably harvested and biodiverse ocean that the UN Decade of Ocean Science and sustainable development goals (SDGs) seek. Ocean-based mitigation actions could contribute 12% of the emissions reductions required by 2030 to keep warming to less than 1.5 ºC but, because substantial warming is already locked in, extensive adaptation action is also needed. Here, as part of the Future Seas project, we use a "foresighting/hindcasting" technique to describe two scenarios for 2030 in the context of climate change mitigation and adaptation for ocean systems. The "business-as-usual" future is expected if current trends continue, while an alternative future could be realised if society were to effectively use available data and knowledge to push as far as possible towards achieving the UN SDGs. We identify three drivers that differentiate between these alternative futures: (i) appetite for climate action, (ii) handling extreme events, and (iii) climate interventions. Actions that could navigate towards the optimistic, sustainable and technically achievable future include:(i)proactive creation and enhancement of economic incentives for mitigation and adaptation;(ii)supporting the proliferation of local initiatives to spur a global transformation;(iii)enhancing proactive coastal adaptation management;(iv)investing in research to support adaptation to emerging risks;(v)deploying marine-based renewable energy;(vi)deploying marine-based negative emissions technologies;(vii)developing and assessing solar radiation management approaches; and(viii)deploying appropriate solar radiation management approaches to help safeguard critical ecosystems. Supplementary Information: The online version contains supplementary material available at 10.1007/s11160-021-09678-4.

3.
Sci Rep ; 9(1): 9222, 2019 06 25.
Article in English | MEDLINE | ID: mdl-31239470

ABSTRACT

A large retreat of sea-ice in the 'stormy' Atlantic Sector of the Arctic Ocean has become evident through a series of record minima for the winter maximum sea-ice extent since 2015. Results from the Norwegian young sea ICE (N-ICE2015) expedition, a five-month-long (Jan-Jun) drifting ice station in first and second year pack-ice north of Svalbard, showcase how sea-ice in this region is frequently affected by passing winter storms. Here we synthesise the interdisciplinary N-ICE2015 dataset, including independent observations of the atmosphere, snow, sea-ice, ocean, and ecosystem. We build upon recent results and illustrate the different mechanisms through which winter storms impact the coupled Arctic sea-ice system. These short-lived and episodic synoptic-scale events transport pulses of heat and moisture into the Arctic, which temporarily reduce radiative cooling and henceforth ice growth. Cumulative snowfall from each sequential storm deepens the snow pack and insulates the sea-ice, further inhibiting ice growth throughout the remaining winter season. Strong winds fracture the ice cover, enhance ocean-ice-atmosphere heat fluxes, and make the ice more susceptible to lateral melt. In conclusion, the legacy of Arctic winter storms for sea-ice and the ice-associated ecosystem in the Atlantic Sector lasts far beyond their short lifespan.

4.
Sci Rep ; 7: 40850, 2017 01 19.
Article in English | MEDLINE | ID: mdl-28102329

ABSTRACT

The Arctic icescape is rapidly transforming from a thicker multiyear ice cover to a thinner and largely seasonal first-year ice cover with significant consequences for Arctic primary production. One critical challenge is to understand how productivity will change within the next decades. Recent studies have reported extensive phytoplankton blooms beneath ponded sea ice during summer, indicating that satellite-based Arctic annual primary production estimates may be significantly underestimated. Here we present a unique time-series of a phytoplankton spring bloom observed beneath snow-covered Arctic pack ice. The bloom, dominated by the haptophyte algae Phaeocystis pouchetii, caused near depletion of the surface nitrate inventory and a decline in dissolved inorganic carbon by 16 ± 6 g C m-2. Ocean circulation characteristics in the area indicated that the bloom developed in situ despite the snow-covered sea ice. Leads in the dynamic ice cover provided added sunlight necessary to initiate and sustain the bloom. Phytoplankton blooms beneath snow-covered ice might become more common and widespread in the future Arctic Ocean with frequent lead formation due to thinner and more dynamic sea ice despite projected increases in high-Arctic snowfall. This could alter productivity, marine food webs and carbon sequestration in the Arctic Ocean.


Subject(s)
Phytoplankton/growth & development , Arctic Regions , Carbon Compounds, Inorganic/analysis , Eutrophication , Haptophyta/growth & development , Ice Cover , Nitrates/analysis , Satellite Imagery , Seasons
5.
Proc SPIE Int Soc Opt Eng ; 94152015 Feb 21.
Article in English | MEDLINE | ID: mdl-26005249

ABSTRACT

INTRODUCTION: Ultrasound-guided interventions often necessitate scanning of deep-seated anatomical structures that may be hard to visualize. Visualization can be improved using reconstructed 3D ultrasound volumes. High-resolution 3D reconstruction of a large area during clinical interventions is challenging if the region of interest is unknown. We propose a two-stage scanning method allowing the user to perform quick low-resolution scouting followed by high-resolution live volume reconstruction. METHODS: Scout scanning is accomplished by stacking 2D tracked ultrasound images into a low-resolution volume. Then, within a region of interest defined in the scout scan, live volume reconstruction can be performed by continuous scanning until sufficient image density is achieved. We implemented the workflow as a module of the open-source 3D Slicer application, within the SlicerIGT extension and building on the PLUS toolkit. RESULTS: Scout scanning is performed in a few seconds using 3 mm spacing to allow region of interest definition. Live reconstruction parameters are set to provide good image quality (0.5 mm spacing, hole filling enabled) and feedback is given during live scanning by regularly updated display of the reconstructed volume. DISCUSSION: Use of scout scanning may allow the physician to identify anatomical structures. Subsequent live volume reconstruction in a region of interest may assist in procedures such as targeting needle interventions or estimating brain shift during surgery.

SELECTION OF CITATIONS
SEARCH DETAIL
...