Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Microb Ecol ; 67(1): 161-6, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24141944

ABSTRACT

In the present study, the influence of the land use intensity on the diversity of ammonia oxidizing bacteria (AOB) and archaea (AOA) in soils from different grassland ecosystems has been investigated in spring and summer of the season (April and July). Diversity of AOA and AOB was studied by TRFLP fingerprinting of amoA amplicons. The diversity from AOB was low and dominated by a peak that could be assigned to Nitrosospira. The obtained profiles for AOB were very stable and neither influenced by the land use intensity nor by the time point of sampling. In contrast, the obtained patterns for AOA were more complex although one peak that could be assigned to Nitrosopumilus was dominating all profiles independent from the land use intensity and the sampling time point. Overall, the AOA profiles were much more dynamic than those of AOB and responded clearly to the land use intensity. An influence of the sampling time point was again not visible. Whereas AOB profiles were clearly linked to potential nitrification rates in soil, major TRFs from AOA were negatively correlated to DOC and ammonium availability and not related to potential nitrification rates.


Subject(s)
Ammonia/metabolism , Archaea/classification , Bacteria/classification , Phylogeny , Soil Microbiology , Agriculture/methods , Archaea/metabolism , Bacteria/metabolism , Ecosystem , Fertilizers , Germany , Nitrification , Oxidoreductases/genetics , Poaceae , Polymorphism, Restriction Fragment Length , Seasons
2.
PLoS One ; 8(9): e73536, 2013.
Article in English | MEDLINE | ID: mdl-24039974

ABSTRACT

Understanding factors driving the ecology of N cycling microbial communities is of central importance for sustainable land use. In this study we report changes of abundance of denitrifiers, nitrifiers and nitrogen-fixing microorganisms (based on qPCR data for selected functional genes) in response to different land use intensity levels and the consequences for potential turnover rates. We investigated selected grassland sites being comparable with respect to soil type and climatic conditions, which have been continuously treated for many years as intensely used meadows (IM), intensely used mown pastures (IP) and extensively used pastures (EP), respectively. The obtained data were linked to above ground biodiversity pattern as well as water extractable fractions of nitrogen and carbon in soil. Shifts in land use intensity changed plant community composition from systems dominated by s-strategists in extensive managed grasslands to c-strategist dominated communities in intensive managed grasslands. Along the different types of land use intensity, the availability of inorganic nitrogen regulated the abundance of bacterial and archaeal ammonia oxidizers. In contrast, the amount of dissolved organic nitrogen determined the abundance of denitrifiers (nirS and nirK). The high abundance of nifH carrying bacteria at intensive managed sites gave evidence that the amounts of substrates as energy source outcompete the high availability of inorganic nitrogen in these sites. Overall, we revealed that abundance and function of microorganisms involved in key processes of inorganic N cycling (nitrification, denitrification and N fixation) might be independently regulated by different abiotic and biotic factors in response to land use intensity.


Subject(s)
Bacteria/genetics , Ecosystem , Nitrogen Cycle , Nitrogen/analysis , Poaceae/physiology , Soil Microbiology , Agriculture , Bacteria/metabolism , Biodiversity , Denitrification , Genes, Bacterial , Nitrification , Nitrogen/metabolism , Soil
3.
PLoS One ; 7(8): e43292, 2012.
Article in English | MEDLINE | ID: mdl-22937029

ABSTRACT

Very few principles have been unraveled that explain the relationship between soil properties and soil biota across large spatial scales and different land-use types. Here, we seek these general relationships using data from 52 differently managed grassland and forest soils in three study regions spanning a latitudinal gradient in Germany. We hypothesize that, after extraction of variation that is explained by location and land-use type, soil properties still explain significant proportions of variation in the abundance and diversity of soil biota. If the relationships between predictors and soil organisms were analyzed individually for each predictor group, soil properties explained the highest amount of variation in soil biota abundance and diversity, followed by land-use type and sampling location. After extraction of variation that originated from location or land-use, abiotic soil properties explained significant amounts of variation in fungal, meso- and macrofauna, but not in yeast or bacterial biomass or diversity. Nitrate or nitrogen concentration and fungal biomass were positively related, but nitrate concentration was negatively related to the abundances of Collembola and mites and to the myriapod species richness across a range of forest and grassland soils. The species richness of earthworms was positively correlated with clay content of soils independent of sample location and land-use type. Our study indicates that after accounting for heterogeneity resulting from large scale differences among sampling locations and land-use types, soil properties still explain significant proportions of variation in fungal and soil fauna abundance or diversity. However, soil biota was also related to processes that act at larger spatial scales and bacteria or soil yeasts only showed weak relationships to soil properties. We therefore argue that more general relationships between soil properties and soil biota can only be derived from future studies that consider larger spatial scales and different land-use types.


Subject(s)
Biota , Soil , Animals , Biomass , Ecosystem , Oligochaeta
4.
FEMS Microbiol Ecol ; 78(1): 3-16, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21707675

ABSTRACT

Nitrogen management in soils has been considered as key to the sustainable use of terrestrial ecosystems and a protection of major ecosystem services. However, the microorganisms driving processes like nitrification, denitrification, N-fixation and mineralization are highly influenced by changing climatic conditions, intensification of agriculture and the application of new chemicals to a so far unknown extent. In this review, the current knowledge concerning the influence of selected scenarios of global change on the abundance, diversity and activity of microorganisms involved in nitrogen turnover, notably in agricultural and grassland soils, is summarized and linked to the corresponding processes. In this context, data are presented on nitrogen-cycling processes and the corresponding microbial key players during ecosystem development and changes in functional diversity patterns during shifts in land use. Furthermore, the impact of increased temperature, carbon dioxide and changes in precipitation regimes on microbial nitrogen turnover is discussed. Finally, some examples of the effects of pesticides and antibiotics after application to soil for selected processes of nitrogen transformation are also shown.


Subject(s)
Climate Change , Nitrogen Cycle , Nitrogen/analysis , Soil Microbiology , Soil/chemistry , Agriculture , Carbon Dioxide , Climate , Denitrification , Ecosystem , Environmental Pollution/statistics & numerical data , Nitrification , Nitrogen Fixation , Soil Pollutants/toxicity , Xenobiotics/toxicity
5.
FEMS Microbiol Ecol ; 77(1): 95-106, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21410493

ABSTRACT

A geostatistical approach using replicated grassland sites (10 m × 10 m) was applied to investigate the influence of grassland management, i.e. unfertilized pastures and fertilized mown meadows representing low and high land-use intensity (LUI), on soil biogeochemical properties and spatial distributions of ammonia-oxidizing and denitrifying microorganisms in soil. Spatial autocorrelations of the different N-cycling communities ranged between 1.4 and 7.6 m for ammonia oxidizers and from 0.3 m for nosZ-type denitrifiers to scales >14 m for nirK-type denitrifiers. The spatial heterogeneity of ammonia oxidizers and nirS-type denitrifiers increased in high LUI, but decreased for biogeochemical properties, suggesting that biotic and/or abiotic factors other than those measured are driving the spatial distribution of these microorganisms at the plot scale. Furthermore, ammonia oxidizers (amoA ammonia-oxidizing archaea and amoA ammonia-oxidizing bacteria) and nitrate reducers (napA and narG) showed spatial coexistence, whereas niche partitioning was found between nirK- and nirS-type denitrifiers. Together, our results indicate that spatial analysis is a useful tool to characterize the distribution of different functional microbial guilds with respect to soil biogeochemical properties and land-use management. In addition, spatial analyses allowed us to identify distinct distribution ranges indicating the coexistence or niche partitioning of N-cycling communities in grassland soil.


Subject(s)
Agriculture/methods , Archaea/metabolism , Bacteria/metabolism , Nitrogen/metabolism , Poaceae/microbiology , Soil Microbiology , Ammonia/metabolism , Archaea/genetics , Bacteria/genetics , Denitrification , Genes, Bacterial , Germany , Nitrates/metabolism , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Soil/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...