Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters











Database
Language
Publication year range
2.
Nat Commun ; 12(1): 6921, 2021 11 26.
Article in English | MEDLINE | ID: mdl-34836974

ABSTRACT

Fire activity in Australia is strongly affected by high inter-annual climate variability and extremes. Through changes in the climate, anthropogenic climate change has the potential to alter fire dynamics. Here we compile satellite (19 and 32 years) and ground-based (90 years) burned area datasets, climate and weather observations, and simulated fuel loads for Australian forests. Burned area in Australia's forests shows a linear positive annual trend but an exponential increase during autumn and winter. The mean number of years since the last fire has decreased consecutively in each of the past four decades, while the frequency of forest megafire years (>1 Mha burned) has markedly increased since 2000. The increase in forest burned area is consistent with increasingly more dangerous fire weather conditions, increased risk factors associated with pyroconvection, including fire-generated thunderstorms, and increased ignitions from dry lightning, all associated to varying degrees with anthropogenic climate change.

3.
J Environ Manage ; 222: 21-29, 2018 Sep 15.
Article in English | MEDLINE | ID: mdl-29800860

ABSTRACT

The increasing regional and global impact of wildfires on the environment, and particularly on the human population, is becoming a focus of the research community. Both fire behaviour and smoke dispersion models are now underpinning strategic and tactical fire management by many government agencies and therefore model accuracy at regional and local scales is increasingly important. This demands accuracy of all the components of the model systems, biomass fuel loads being among the more significant. Validation of spatial fuels maps at a regional scale is uncommon; in part due to the limited availability of independent observations of fuel loads, and in part due to a focus on the impact of model outputs. In this study we evaluate two approaches for estimating fuel loads at a regional scale and test their accuracy against an extensive set of field observations for the State of Victoria, Australia. The first approach, which assumes that fuel accumulation is an attribute of the vegetation class, was developed for the fire behaviour model Phoenix Rapid-Fire, with apparent success; the second approach applies the Community Atmosphere Biosphere Land Exchange (CABLE) process-based terrestrial biosphere model, implemented at high resolution across the Australian continent. We show that while neither model is accurate over the full range of fine and coarse fuel loads, CABLE biases can be corrected for the full regional domain with a single linear correction, however the classification based Phoenix requires a matrix of factors to correct its bias. We conclude that these examples illustrate that the benefits of simplicity and resolution inherent in classification-based models do not compensate for their lack of accuracy, and that lower resolution but inherently more accurate carbon-cycle models may be preferable for estimating fuel loads for input into smoke dispersion models.


Subject(s)
Forests , Smoke , Wildfires , Humans , South Australia , Victoria
4.
Nat Commun ; 7: 11536, 2016 05 05.
Article in English | MEDLINE | ID: mdl-27146785

ABSTRACT

Vegetation fires are a complex phenomenon in the Earth system with many global impacts, including influences on global climate. Estimating carbon emissions from vegetation fires relies on a carbon mass balance technique that has evolved with two different interpretations. Databases of global vegetation fire emissions use an approach based on 'consumed biomass', which is an approximation to the biogeochemically correct 'burnt carbon' approach. Here we show that applying the 'consumed biomass' approach to global emissions from vegetation fires leads to annual overestimates of carbon emitted to the atmosphere by 4.0% or 100 Tg compared with the 'burnt carbon' approach. The required correction is significant and represents ∼9% of the net global forest carbon sink estimated annually. Vegetation fire emission studies should use the 'burnt carbon' approach to quantify and understand the role of this burnt carbon, which is not emitted to the atmosphere, as a sink enriched in carbon.

5.
Chemosphere ; 88(3): 352-7, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22503461

ABSTRACT

Emission factors for PCDD/PCDF determined from open combustion are used to estimate national emission budgets; therefore, it is important to have confidence in their accuracy. It has been suspected that artefacts may form due to the presence of hot metal surfaces of sampling equipment, thus skewing emission factors. In this study, emissions of PCDD/PCDF from open burning of forest biomass over a brick hearth were sampled. Five experiments were carried out using a portable sampler. Experiments were designed where the key variable, sample hood and inlet temperatures were manipulated. Other variables such as fuel origin, type and density were consistent. The measured concentration of PCDD/PCDF in the smoke samples ranged from 0.01 µg TEQ (t fuel)(-1) at the lowest maximum hood temperature (185°C) to 15 µg TEQ (t fuel)(-1) at the highest maximum hood temperature (598°C). when hood inlet temperatures exceeded 400°C emission factors were significantly elevated and this is attributed to the formation of artefacts that can cause the over estimation of emission factors. The increase in hood temperature also resulted in a change in the PCDD/PCDF congener and homologue profile of the emissions. For example at the lowest temperature (Fire 1) the PCDD/PCDF ratio measured was 50:1, whereas at the highest temperature (Fire 5) this ratio was about 0.53:1. When the sampler hood and inlet temperatures were kept in the normal operating range of <200°C, emission factors were comparable to those observed in many previous studies in Australia with emissions dominated by PCDD.


Subject(s)
Air Pollutants/analysis , Benzofurans/analysis , Biomass , Fires , Polychlorinated Dibenzodioxins/analogs & derivatives , Smoke/analysis , Trees/chemistry , Dibenzofurans, Polychlorinated , Polychlorinated Dibenzodioxins/analysis
6.
Environ Int ; 38(1): 62-6, 2012 Jan.
Article in English | MEDLINE | ID: mdl-21982034

ABSTRACT

The Stockholm Convention on Persistent Organic Pollutants includes in its aims the minimisation of unintentional releases of polychlorinated dibenzo-dioxins and dibenzofurans (PCDD/PCDF) and dioxin like PCB (dl-PCB) to the environment. Development and implementation of policies to achieve this aim require accurate national inventories of releases of PCDD/PCDF/dl-PCB. To support this objective, the Conference of Parties established a process to review and update the UNEP Standardized Toolkit for Identification and Quantification of Dioxin and Furan Releases. An assessment of all emission inventories was that for many countries open burning of biomass and waste was identified as the major source of PCDD/PCDF releases. However, the experimental data underpinning the release estimates used were limited in number and, consequently, confidence in the accuracy of the emissions predictions was low. There has been significant progress in measurement technology since the last edition of the Toolkit in 2005. In this paper we reassess published emission factors for release of PCDD/PCDF and dl-PCB to land and air. In total, four types of biomass and 111 emission factors were assessed. It was found that there are no systematic differences in emission factors apparent between biomass types or fire classes. The data set is best described by a lognormal distribution. The geometric mean emission factors (EFs) for releases of PCDD/PCDF to air for the four biomass classes used in the Toolkit (sugarcane, cereal crops, forest and savannah/grass) are 1.6µg TEQ (t fuel)(-1), 0.49µg TEQ (t fuel)(-1), 1.0µg TEQ (t fuel)(-1) and 0.4µg TEQ (t fuel)(-1), respectively. Corresponding EFs for release of PCDD/PCDF to land are 3.0ng TEQ (kg ash)(-1), 1.1ng TEQ (kg ash)(-1), 1.1ng TEQ (kg ash)(-1) and 0.67ng TEQ (kg ash)(-1). There are now also sufficient published data available to evaluate EFs for dl-PCB release to air for sugarcane, forest and grass/savannah; these are 0.03µg TEQ (t fuel)(-1), 0.09µg TEQ (t fuel)(-1) and 0.01µg TEQ (t fuel)(-1), respectively. The average EF for dl-PCB release to land is 0.19ng TEQ (kg ash)(-1). Application of these EFs to national emissions of PCDD/PCDF for global estimates from open burning will lower previous estimates of PCDD/PCDF releases to air and to land by 85% and 90%, respectively. For some countries, the ranking of their major sources will be changed and open burning of biomass will become less significant than previously concluded.


Subject(s)
Air Pollutants/analysis , Benzofurans/analysis , Incineration , Polychlorinated Biphenyls/analysis , Polychlorinated Dibenzodioxins/analogs & derivatives , Biomass , Polychlorinated Dibenzodioxins/analysis
7.
Environ Int ; 37(2): 314-21, 2011 Feb.
Article in English | MEDLINE | ID: mdl-20956017

ABSTRACT

Firefighters are exposed to known health-damaging air pollutants present in bushfire smoke and poorly managed exposure can result in serious health issues. A better understanding of exposure levels and the major factors influencing exposures is crucial for the development of mitigation strategies to minimise exposure risks and adverse health impacts. This study monitored air toxics within the breathing zone of firefighters at prescribed burns and at wildfires in Australia. The results showed that exposure levels were highly variable, with higher exposures (sometimes exceeding occupational exposure standards) associated with particular work tasks (such as patrol and suppression) and with certain burn conditions. The majority of firefighter's exposures were at low and moderate levels (~60%), however considerable attention should be given to the high (~30%) and very high (6%) exposure risk situations for which acute and chronic health risks are very likely and for which control strategies should be developed and implemented to minimise health risks.


Subject(s)
Air Pollutants, Occupational/analysis , Inhalation Exposure/analysis , Occupational Diseases/epidemiology , Occupational Exposure/analysis , Smoke Inhalation Injury/epidemiology , Smoke/analysis , Air Pollution/statistics & numerical data , Carbon Monoxide/analysis , Conservation of Natural Resources/methods , Environmental Monitoring , Epidemiological Monitoring , Fires/prevention & control , Formaldehyde/analysis , Humans , Inhalation Exposure/adverse effects , Inhalation Exposure/statistics & numerical data , Occupational Exposure/adverse effects , Occupational Exposure/statistics & numerical data , Risk Assessment
8.
J Environ Qual ; 37(2): 599-607, 2008.
Article in English | MEDLINE | ID: mdl-18396546

ABSTRACT

A review is presented on trace gas exchange of CH4, CO, N2O, and NOx arising from agriculture and natural sources in the world's semiarid and arid zones due to soil processes. These gases are important contributors to the radiative forcing and the chemistry of the atmosphere. Quantitative information is summarized from the available studies. Between 5 and 40% of the global soil-atmosphere exchange for these gases (CH4, CO, N2O, and NOx) may occur in semiarid and arid zones, but for each of these gases there are fewer than a dozen studies to support the individual estimates, and these are from a limited number of locations. Significant differences in the biophysical and chemical processes controlling these trace gas exchanges are identified through the comparison of semiarid and arid zones with the moist temperate or wet/dry savanna land regions. Therefore, there is a poorly quantified understanding of the contribution of these regions to the global trace gas cycles and atmospheric chemistry. More importantly, there is a poor understanding of the feedback between these exchanges, global change, and regional land use and air pollution issues. A set of research issues is presented.


Subject(s)
Air Pollutants/analysis , Desert Climate , Gases/analysis , Atmosphere , Environmental Monitoring , Soil
SELECTION OF CITATIONS
SEARCH DETAIL