Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 60
Filter
Add more filters










Publication year range
1.
J Chem Phys ; 161(1)2024 Jul 07.
Article in English | MEDLINE | ID: mdl-38953445

ABSTRACT

We construct the effective Hartree potential for H2 on Cu(111) as introduced in our earlier work [Dutta et al., J. Chem. Phys. 154, 104103 (2021), and Dutta et al., J. Chem. Phys. 157, 194112 (2022)] starting from the same gas-metal interaction potential obtained for 0 K. Unlike in that work, we now explicitly account for surface expansion at 925 K and investigate different models to describe the surface vibrational modes: (i) a cluster model yielding harmonic normal modes at 0 K and (ii) slab models resulting in phonons at 0 and 925 K according to the quasi-harmonic approximation-all consistently calculated at the density functional theory level with the same exchange-correlation potential. While performing dynamical calculations for the H2(v = 0, j = 0)-Cu(111) system employing Hartree potential constructed with 925 K phonons and surface temperature, (i) the calculated chemisorption probabilities are the highest compared to the other approaches over the energy domain and (ii) the threshold for the reaction probability is the lowest, in close agreement with the experiment. Although the survival probabilities (v' = 0) depict the expected trend (lower in magnitude), the excitation probabilities (v' = 1) display a higher magnitude since the 925 K phonons and surface temperature are more effective for the excitation process compared to the phonons/normal modes obtained from the other approaches investigated to describe the surface.

2.
J Phys Chem Lett ; 15(1): 307-315, 2024 Jan 11.
Article in English | MEDLINE | ID: mdl-38169287

ABSTRACT

Predictive capability, accuracy, and affordability are essential features of a theory that is capable of describing dissociative chemisorption on a metal surface. This type of reaction is important for heterogeneous catalysis. Here we present an approach in which we use diffusion Monte Carlo (DMC) to pin the minimum barrier height and construct a density functional that reproduces this value. This predictive approach allows the construction of a potential energy surface at the cost of density functional theory while retaining near DMC accuracy. Scrutinizing effects of energy dissipation and quantum tunneling, dynamics calculations suggest the approach to be of near chemical accuracy, reproducing molecular beam sticking experiments for the showcase H2 + Al(110) system to ∼1.4 kcal/mol.

3.
J Phys Chem Lett ; 15(3): 840-848, 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38235960

ABSTRACT

In semiconductor devices, hydrogen has traditionally been viewed as a panacea for defects, being adept at neutralizing dangling bonds and consequently purging the related states from the band gap. With amorphous silicon nitride (a-Si3N4)─a material critical for electronic, optical, and mechanical applications─this belief holds true as hydrogen passivates both silicon and nitrogen dangling bonds. However, there is more to the story. Our density functional theory calculations unveil hydrogen's multifaceted role upon incorporation in a-Si3N4. On the "Jekyll" side, hydrogen atoms are indeed restorative, healing coordination defects in a-Si3N4. However, "Hyde" emerges as hydrogen induces Si-N bond breaking, particularly in strained regions of the amorphous network. Beyond these dual roles, our study reveals an intricate balance between hydrogen defect centers and intrinsic charge traps that already exist in pristine a-Si3N4: the excess charges provided by the H atoms result in charging of the a-Si3N4 dielectric layer.

4.
J Phys Chem C Nanomater Interfaces ; 127(50): 24158-24167, 2023 Dec 21.
Article in English | MEDLINE | ID: mdl-38148851

ABSTRACT

Copper-based catalysts gain activity through the presence of poorly coordinated Cu atoms and incomplete oxidation at the surface. The catalytic mechanisms can in principle be observed by controlled dosing of reactants to single-crystal substrates. However, the interconnected influences of surface defects, partial oxidation, and adsorbate coverage present a large matrix of conditions that have not been fully explored in the literature. We recently characterized oxygen and carbon monoxide coadsorption on Cu(111), a nominally defect-free surface, and now extend our study to the stepped surface Cu(211). Temperature-programmed desorption of CO adsorbed to bare metal surfaces confirms that two sites dominate desorption from a saturated layer: atop terrace atoms of local (111) character and atop step edge atoms with CO bound more strongly to the latter. At low coverage, discrete CO resonances in reflection adsorption infrared spectra can be assigned to these sites: 2077 cm-1 for extended (111) terraces, 2093 cm-1 for step sites, and additional kink-adsorbed molecules at 2110 cm-1. With increasing coverage, in contrast to Cu(111), the infrared spectral features on Cu(211) evolve and shift as a consequence of dipole-dipole coupling between differentially occupied types of sites. Auger electron spectroscopy shows that exposure to background O2 oxidizes the (211) surface at a rate nearly 1 order of magnitude greater than (111); we argue that the resulting surface is stoichiometric Cu2O, as previously found for Cu(111). This oxide binds CO less strongly than the bare metal and the underlying crystal cut continues to influence the adsorption sites available to CO. On oxidized (111) terraces, broad absorption peaks at 2115-2120 cm-1; on oxidized Cu(211), CO adsorbed to step sites appears as a resolved secondary peak at 2144 cm-1. This suite of spectroscopic signatures, obtained under carefully controlled conditions, will help to determine the origin and fate of adsorbed species in future studies of reaction mechanisms on copper.

5.
ACS Earth Space Chem ; 7(7): 1423-1432, 2023 Jul 20.
Article in English | MEDLINE | ID: mdl-37492630

ABSTRACT

In the interstellar medium, six molecules have been conclusively detected in the solid state in interstellar ices, and a few dozen have been hypothesized and modeled to be present in the solid state as well. The icy mantles covering micrometer-sized dust grains are, in fact, thought to be at the core of complex molecule formation as a consequence of the local high density of molecules that are simultaneously adsorbed. From a structural perspective, the icy mantle is considered to be layered, with an amorphous water-rich inner layer surrounding the dust grain, covered by an amorphous CO-rich outer layer. Moreover, recent studies have suggested that the CO-rich layer might be crystalline and possibly even be segregated as a single crystal atop the ice mantle. If so, there are far-reaching consequences for the formation of more complex organic molecules, such as methanol and sugars, that use CO as a backbone. Validation of these claims requires further investigation, in particular on acquiring atomistic insight into surface processes, such as adsorption, diffusion, and reactivity on CO ices. Here, we present the first detailed computational study toward treating the weak interaction of (pure) CO ices. We provide a benchmark of the performance of various density functional theory methods in treating the binding of pure CO ices. Furthermore, we perform an atomistic and in-depth study of the binding energy of CO on amorphous and crystalline CO ices using a pair-potential-based force field. We find that CO adsorption is represented by a large distribution of binding energies (200-1600 K) on amorphous CO, including a significant amount of weak binding sites (<350 K). Increasing both the cluster size and the number of neighbors increases the mean of the observed binding energy distribution. Finally, we find that CO binding energies are dominated by dispersion and, as such, exchange-correlation functionals need to include a treatment of dispersion to accurately simulate surface processes on CO ices. In particular, we find the ωB97M-V functional to be a strong candidate for such simulations.

6.
J Colloid Interface Sci ; 641: 903-915, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36972625

ABSTRACT

HYPOTHESIS: Adhesion between particles and a filter fiber is an important process of the filtration as it dictates the process of separation and in the following the detachment process of particles during filter regeneration. In addition to the shear stress that a new polymeric stretchable filter fiber implements into the particulate structure, the elongation of the substrate (fiber) is also expected to cause a structural change in the surface of the polymer. Thus, the changed contact area and surface energy could affect the adhesion force between particles and fibers. EXPERIMENTS: Systematic measurements of adhesion forces between a single particle and the stretchable substrate were performed using Atomic Force Microscope (AFM). The substrate surface characteristics (roughness) was changed directly beneath the modified measurement head using piezo-motors to achieve stepless elongation state. Polystyrene particles and particles made of Spheriglass were applied. FINDINGS: In the experiments, a reduced adhesion force between the particles and the filter fiber was found for a new high range of substrate roughness and peak-to-peak distance, in which the Rabinovich model has not been used before [1]. Further, the influence of high and low energy surface particulate material was evaluated to understand the detachment process in the new real adaptive filter and in DEM-simulation.

7.
J Phys Chem Lett ; 13(50): 11831-11836, 2022 Dec 22.
Article in English | MEDLINE | ID: mdl-36520035

ABSTRACT

The anomalous volume isotope effect (VIE) of ice Ih is calculated and analyzed based on the quasi-harmonic approximation to account for nuclear quantum effects in the Helmholtz free energy. While a lot of recently developed polarizable many-body potential functions give a normal VIE contrary to experimental results, we find that one of them, MB-pol, yields the anomalous VIE in good agreement with the most recent high-resolution neutron diffraction measurements─better than DFT calculations. The short-range three-body terms in the MB-pol function, which are fitted to CCSD(T) calculations, are found to have a surprisingly large influence. A vibrational mode group decomposition of the zero-point pressure together with a hitherto unconsidered benchmark value for the intramolecular stretching modes of H2O ice Ih obtained from Raman spectroscopy data unveils the reason for the VIE: a delicate competition between the latter and the librations.

8.
J Chem Phys ; 157(19): 194112, 2022 Nov 21.
Article in English | MEDLINE | ID: mdl-36414467

ABSTRACT

The effect of surface mode vibrations on the reactive scattering of D2, initialized in the ground rovibrational state (v = 0, j = 0), from a Cu(111) surface is investigated for different surface temperature situations. We adopt a time and temperature dependent effective Hamiltonian [Dutta et al., J. Chem. Phys. 154, 104103 (2021)] constructed by combining the linearly coupled many oscillator model [Sahoo et al., J. Chem. Phys. 136, 084306 (2012)] and the static corrugation model [M. Wijzenbroek and M. F. Somers, J. Chem. Phys. 137, 054703 (2012)] potential within the mean-field approach. Such an effective Hamiltonian is employed for six-dimensional quantum dynamical calculations to obtain temperature dependent reaction and state-to-state scattering probability profiles as a function of incidence energy of colliding D2 molecules. As reported in the experimental studies, the movements of surface atoms modify the dissociative scattering dynamics at higher surface temperature by exhibiting vibrational quantum and surface atoms' recoil effects in the low and high collision energy domains, respectively. Finally, we compare our present theoretical results with the experimental and other theoretical outcomes, as well as discuss the novelty of our findings.

9.
J Chem Theory Comput ; 18(12): 7528-7543, 2022 Dec 13.
Article in English | MEDLINE | ID: mdl-36395502

ABSTRACT

A potential function is presented for describing a system of flexible H2O molecules based on the single-center multipole expansion (SCME) of the electrostatic interaction. The model, referred to as SCME/f, includes the variation of the molecular quadrupole moment as well as the dipole moment with changes in bond length and angle so as to reproduce results of high-level electronic structure calculations. The multipole expansion also includes fixed octupole and hexadecapole moments, as well as anisotropic dipole-dipole, dipole-quadrupole, and quadrupole-quadrupole polarizability tensors. The model contains five adjustable parameters related to the repulsive interaction and damping functions in the electrostatic and dispersion interactions. Their values are adjusted to reproduce the lowest energy isomers of small clusters, (H2O)n with n = 2-6, as well as measured properties of the ice Ih crystal. Subsequent calculations of the energy difference between the various isomer configurations of the clusters show that SCME/f gives good agreement with results of electronic structure calculations and represents a significant improvement over the previously presented rigid SCME potential function. Analysis of the vibrational frequencies of the clusters and structural properties of ice Ih crystal show the importance of accurately describing the variation of the quadrupole moment with molecular structures.


Subject(s)
Ice , Water , Water/chemistry , Static Electricity , Molecular Structure
10.
J Phys Chem C Nanomater Interfaces ; 126(31): 13114-13121, 2022 Aug 11.
Article in English | MEDLINE | ID: mdl-35983315

ABSTRACT

In a study preliminary to investigating CO2 dissociation, we report our results on oxygen and carbon monoxide coadsorption on Cu(111). We use reflection adsorption infrared spectroscopy and Auger electron spectroscopy to characterize and quantify adsorbed species. On clean Cu(111), the CO internal stretch mode appears initially at 2077 cm-1 for a surface temperature of ∼80 K. We accurately reproduce the previously determined redshift of the absorption band with increasing CO coverage. We subsequently oxidize the surface by exposure to O2 at 300 K to ensure O2 dissociation. The band's frequency and line shape of subsequently adsorbed CO at ∼80 K are not affected. However, the maximum absorbance and integrated peak intensities drop with increasing O coverage. The data suggest that CO is not adsorbed near O, likely as a consequence of the mechanism of Cu(111) surface oxidation by O2 at 300 K. We discuss whether our RAIRS results may be used to quantify CO2 dissociation in the zero-coverage limit.

11.
Membranes (Basel) ; 12(8)2022 Aug 12.
Article in English | MEDLINE | ID: mdl-36005691

ABSTRACT

To predict the behavior of gas-cleaning filters during real-world operation, it is essential to understand their response to ambient conditions. The temporary presence of water droplets in gas-cleaning filtration systems due to fog, spray rain, or condensation, as examples of irregular events, has an impact on the filters' operating performance, especially when soluble particles are present. In this work, surface filters were loaded with mixtures of water-soluble salt particles and insoluble glass spheres. These were, subsequently, exposed to water mist and dried by a particle-free gas stream. A novel approach to analyze the drainage of solution on filters with soluble filter cakes is presented, which allows the detection of solubles on the clean gas side of the filter. As a result, this work, for the first time, presents a sighting of the penetration of soluble filter cake material through gas-cleaning filters. Furthermore, filter performance, in terms of differential pressure and fractional separation efficiency, was determined and a characteristic differential pressure evolution for hydrophilic filters during exposure to water mist was also identified. The fractional separation efficiency of gas-cleaning filters decreases due to exposure to water mist. The findings are supported by scanning electron microscopy (SEM) images, energy-dispersive X-ray (EDX), and X-ray microtomography (µ-CT analysis) images.

12.
Sensors (Basel) ; 22(4)2022 Feb 10.
Article in English | MEDLINE | ID: mdl-35214272

ABSTRACT

A novel apparatus was developed, to investigate the detachment of particle structures consisting of soot and ash from a single fibre or a fibre array in hot gas flow. Key features of the novel apparatus are operation at high temperatures while two different measurement techniques are applied simultaneously in the same measurement chamber to observe particle structure detachment from a loaded fibre array. A heated inlet can heat the air stream at the position of the fibre array up to 470 °C, allowing detachment investigations at temperatures relevant for the operation of, e.g., soot particle filters. The first measurement technique integrated in the setup is video recording of the fibre array, which gives qualitative information on the rearrangement or detachment of particulate matter on the fibre. Because it is often difficult to distinguish rearrangement and detachment from pure visual observations, a second measurement technique is applied. This technique is a laser-light-sheet optical particle counter, which can detect detached particle structures and determine their size. The measurable size range is 257 to 1523 µm for glass spheres. This paper presents and discusses the novel apparatus, its calibration and first detachment measurement results.

13.
Phys Chem Chem Phys ; 23(47): 26661-26673, 2021 Dec 08.
Article in English | MEDLINE | ID: mdl-34709259

ABSTRACT

To understand elementary reaction steps in the hydrogenation of CO2 over copper-based catalysts, we experimentally study the adsorption of CO2 and H2 onto cationic Cun+ clusters. For this, we react Cun+ clusters formed by laser ablation with a mixture of H2 and CO2 in a flow tube-type reaction channel and characterize the products formed by IR multiple-photon dissociation spectroscopy employing the IR free-electron laser FELICE. We analyze the spectra by comparing them to literature spectra of Cun+ clusters reacted with H2 and with new spectra of Cun+ clusters reacted with CO2. The latter indicate that CO2 is physisorbed in an end-on configuration when reacted with the clusters alone. Although the spectra for the co-adsorption products evidence H2 dissociation, no signs for CO2 activation or reduction are observed. This lack of reactivity for CO2 is rationalized by density functional theory calculations, which indicate that CO2 dissociation is hindered by a large reaction barrier. CO2 reduction to formate should energetically be possible, but the lack of formate observation is attributed to kinetic hindering.

14.
Sci Rep ; 11(1): 14649, 2021 Jul 19.
Article in English | MEDLINE | ID: mdl-34282159

ABSTRACT

Due to the low corrugation of the Au(111) surface, 1,4-bis(phenylethynyl)-2,5-bis(ethoxy)benzene (PEEB) molecules can form quasi interlocked lateral patterns, which are observed in scanning tunneling microscopy experiments at low temperatures. We demonstrate a multi-dimensional clustering approach to quantify the anisotropic pair-wise interaction of molecules and explain these patterns. We perform high-throughput calculations to evaluate an energy function, which incorporates the adsorption energy of single PEEB molecules on the metal surface and the intermolecular interaction energy of a pair of PEEB molecules. The analysis of the energy function reveals, that, depending on coverage density, specific types of pattern are preferred which can potentially be exploited to form one-dimensional molecular wires on Au(111).

15.
J Phys Chem A ; 125(14): 2836-2848, 2021 Apr 15.
Article in English | MEDLINE | ID: mdl-33787276

ABSTRACT

IR spectra of cationic copper clusters Cun+ (n = 4-7) complexed with hydrogen molecules are recorded via IR multiple-photon dissociation (IRMPD) spectroscopy. To this end, the copper clusters are generated via laser ablation and reacted with H2 and D2 in a flow-tube-type reaction channel. The complexes formed are irradiated using IR light provided by the free-electron laser for intracavity experiments (FELICE). The spectra are interpreted by making use of isotope-induced shifts of the vibrational bands and by comparing them to density functional theory calculated spectra for candidate structures. The structural candidates have been obtained from global sampling with the minima hopping method, and spectra are calculated at the semilocal (PBE) and hybrid (PBE0) functional level. The highest-quality spectra have been recorded for [5Cu, 2H/2D]+, and we find that the semilocal functional provides better agreement for the lowest-energy isomers. The interaction of hydrogen with the copper clusters strongly depends on their size. Binding energies are largest for Cu5+, which goes hand in hand with the observed predominantly dissociative adsorption. Due to smaller binding energies for dissociated H2 and D2 for Cu4+, also a significant amount of molecular adsorption is observed as to be expected according to the Evans-Polanyi principle. This is confirmed by transition-state calculations for Cu4+ and Cu5+, which show that hydrogen dissociation is not hindered by an endothermic reaction barrier for Cu5+ and by a slightly endothermic barrier for Cu4+. For Cu6+ and Cu7+, it was difficult to draw clear conclusions because the IR spectra could not be unambiguously assigned to structures.

16.
J Chem Phys ; 154(10): 104103, 2021 Mar 14.
Article in English | MEDLINE | ID: mdl-33722025

ABSTRACT

The effect of surface atom vibrations on H2 scattering from a Cu(111) surface at different temperatures is being investigated for hydrogen molecules in their rovibrational ground state (v = 0, j = 0). We assume weakly correlated interactions between molecular degrees of freedom and surface modes through a Hartree product type wavefunction. While constructing the six-dimensional effective Hamiltonian, we employ (a) a chemically accurate potential energy surface according to the static corrugation model [M. Wijzenbroek and M. F. Somers, J. Chem. Phys. 137, 054703 (2012)]; (b) normal mode frequencies and displacement vectors calculated with different surface atom interaction potentials within a cluster approximation; and (c) initial state distributions for the vibrational modes according to Bose-Einstein probability factors. We carry out 6D quantum dynamics with the so-constructed effective Hamiltonian and analyze sticking and state-to-state scattering probabilities. The surface atom vibrations affect the chemisorption dynamics. The results show physically meaningful trends for both reaction and scattering probabilities compared to experimental and other theoretical results.

17.
J Phys Chem Lett ; 11(21): 9038-9044, 2020 Nov 05.
Article in English | MEDLINE | ID: mdl-32986432

ABSTRACT

Transition metal dichalcogenides (TMDCs) are a type of two-dimensional (2D) material that has been widely investigated by both experimentalists and theoreticians because of their unique properties. In the case of cobalt sulfide, density functional theory (DFT) calculations on free-standing S-Co-S sheets suggest there are no stable 2D cobalt sulfide polymorphs, whereas experimental observations clearly show TMDC-like structures on Au(111). In this study, we resolve this disagreement by using a combination of experimental techniques and DFT calculations, considering the substrate explicitly. We find a 2D CoS(0001)-like sheet on Au(111) that delivers excellent agreement between theory and experiment. Uniquely this sheet exhibits a metallic character, contrary to most TMDCs, and exists due to the stabilizing interactions with the Au(111) substrate.

18.
Materials (Basel) ; 13(19)2020 Sep 24.
Article in English | MEDLINE | ID: mdl-32987861

ABSTRACT

In this article, a newly developed test setup for the aging of optical plastics by visible radiation (450 nm) is presented. In addition to a comprehensive monitoring of the operating parameters and an efficient cooling of the high-power multiple chips on board the LEDs used, the plastic samples can be fully temperature-controlled, independent of the radiant power of the LED, due to fluid driven thermostatization. The sample surface temperatures and irradiance values were verified by in situ measurements and simulations. To validate the test setup, polycarbonate samples with well-known aging behavior were aged for 1896 h. By spectroscopic IR and UV/vis analysis of the samples at different aging times, known optical aging results of polycarbonate could be observed, which proves the intended operationality of the system.

19.
J Phys Chem Lett ; 11(19): 8268-8274, 2020 Oct 01.
Article in English | MEDLINE | ID: mdl-32902994

ABSTRACT

Calorimetric studies on ice II reveal a surprising H2O/D2O isotope effect. While the ice II to ice Ic transition is endothermic for H2O, it is exothermic for D2O samples. The transition enthalpies are +40 and -140 J/mol, respectively, where such a sign change upon isotope substitution is unprecedented in ice research. To understand the observations we employ force field calculations using two water models known to perform well for H2O ice phases and their vibrational properties. These simulations reveal that the isotope effect can be traced back to zero-point energy. q-TIP4P/F fares better and is able to account for approximately three-fourths of the isotope effect, while MB-pol only catches approximately one-third. Phonon and configurational entropy contributions are necessary to predict reasonable transition enthalpies, but they do not have an impact on the isotope effect. We suggest to use these calorimetric isotope data as a benchmark for water models.

20.
J Phys Chem B ; 123(46): 9912-9921, 2019 11 21.
Article in English | MEDLINE | ID: mdl-31647235

ABSTRACT

We investigate the dielectric constant and the dielectric decrement of aqueous NaCl solutions by means of molecular dynamic simulations. We thereby compare the performance of four different force fields and focus on disentangling the origin of the dielectric decrement and the influence of scaled ionic charges, as often used in nonpolarizable force fields to account for the missing dynamic polarizability in the shielding of electrostatic ion interactions. Three of the force fields showed excessive contact ion pair formation, which correlates with a reduced dielectric decrement. In spite of the fact that the scaling of charges only weakly influenced the average polarization of water molecules around an ion, the rescaling of ionic charges did influence the dielectric decrement, and a close-to-linear relation of the slope of the dielectric constant as a function of concentration with the ionic charge was found.

SELECTION OF CITATIONS
SEARCH DETAIL
...