Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Cells ; 11(24)2022 12 16.
Article in English | MEDLINE | ID: mdl-36552844

ABSTRACT

Cancer is one of the leading causes of death worldwide, thus the search for new cancer therapies is of utmost importance. Ursolic acid is a naturally occurring pentacyclic triterpene with a wide range of pharmacological activities including anti-inflammatory and anti-neoplastic effects. The latter has been assigned to its ability to promote apoptosis and inhibit cancer cell proliferation by poorly defined mechanisms. In this report, we identify lysosomes as the essential targets of the anti-cancer activity of ursolic acid. The treatment of MCF7 breast cancer cells with ursolic acid elevates lysosomal pH, alters the cellular lipid profile, and causes lysosomal membrane permeabilization and leakage of lysosomal enzymes into the cytosol. Lysosomal membrane permeabilization precedes the essential hallmarks of apoptosis placing it as an initial event in the cascade of effects induced by ursolic acid. The disruption of the lysosomal function impairs the autophagic pathway and likely partakes in the mechanism by which ursolic acid kills cancer cells. Furthermore, we find that combining treatment with ursolic acid and cationic amphiphilic drugs can significantly enhance the degree of lysosomal membrane permeabilization and cell death in breast cancer cells.


Subject(s)
Breast Neoplasms , Lysosomes , Humans , Female , Lysosomes/metabolism , Homeostasis , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Lipids/pharmacology , Ursolic Acid
2.
PLoS One ; 17(11): e0277058, 2022.
Article in English | MEDLINE | ID: mdl-36409725

ABSTRACT

Isomeric lysosphingolipids, galactosylsphingosine (GalSph) and glucosylsphingosine (GlcSph), are present in only minute levels in healthy cells. Due to defects in their lysosomal hydrolysis, they accumulate at high levels and cause cytotoxicity in patients with Krabbe and Gaucher diseases, respectively. Here, we show that GalSph and GlcSph induce lysosomal membrane permeabilization, a hallmark of lysosome-dependent cell death, in human breast cancer cells (MCF7) and primary fibroblasts. Supporting lysosomal leakage as a causative event in lysosphingolipid-induced cytotoxicity, treatment of MCF7 cells with lysosome-stabilizing cholesterol prevented GalSph- and GlcSph-induced cell death almost completely. In line with this, fibroblasts from a patient with Niemann-Pick type C disease, which is caused by defective lysosomal cholesterol efflux, were significantly less sensitive to lysosphingolipid-induced lysosomal leakage and cell death. Prompted by the data showing that MCF7 cells with acquired resistance to lysosome-destabilizing cationic amphiphilic drugs (CADs) were partially resistant to the cell death induced by GalSph and GlcSph, we compared these cell death pathways with each other. Like CADs, GalSph and GlcSph activated the cyclic AMP (cAMP) signalling pathway, and cAMP-inducing forskolin sensitized cells to cell death induced by low concentrations of lysosphingolipids. Contrary to CADs, lysosphingolipid-induced cell death was independent of lysosomal Ca2+ efflux through P2X purinerigic receptor 4. These data reveal GalSph and GlcSph as lysosome-destabilizing lipids, whose putative use in cancer therapy should be further investigated. Furthermore, the data supports the development of lysosome stabilizing drugs for the treatment of Krabbe and Gaucher diseases and possibly other sphingolipidoses.


Subject(s)
Gaucher Disease , Neoplasms , Humans , Psychosine/metabolism , Lysosomes/metabolism , Cell Death , Gaucher Disease/metabolism , Cyclic AMP/metabolism , Cholesterol/metabolism , Neoplasms/metabolism
3.
Curr Opin Cell Biol ; 71: 29-37, 2021 08.
Article in English | MEDLINE | ID: mdl-33684809

ABSTRACT

Lysosomal membrane permeabilization and subsequent leakage of lysosomal hydrolases into the cytosol are considered as the major hallmarks of evolutionarily conserved lysosome-dependent cell death. Contradicting this postulate, new sensitive methods that can detect a minimal lysosomal membrane damage have demonstrated that lysosomal leakage does not necessarily equal cell death. Notably, cells are not only able to survive minor lysosomal membrane permeabilization, but some of their normal functions actually depend on leaked lysosomal hydrolases. Here we discuss emerging data suggesting that spatially and temporally controlled lysosomal leakage delivers lysosomal hydrolases to specific subcellular sites of action and controls at least three essential cellular processes, namely mitotic chromosome segregation, inflammatory signaling, and cellular motility.


Subject(s)
Intracellular Membranes , Lysosomes , Cell Movement , Humans , Inflammation , Mitosis
4.
Protein Pept Lett ; 23(9): 772-6, 2016.
Article in English | MEDLINE | ID: mdl-27295953

ABSTRACT

The design and synthesis of modified pentapeptides based on a truncated version of the substrate for KDM4C, a histone lysine demethylase (KDM), and investigation of their inhibitory activity at KDM4C is reported. By modifying the lysine residue corresponding to lysine 9 at histone 3 (H3K9), three different series of peptides were designed and synthesized. One series contained N-acylated H3K9 and two series introduced triazoles in this position via click chemistry to enable facile variation of headgroups. The click reaction is compatible with free amino acids and this was performed on an azido containing deprotected pentapeptide demonstrating a highly facile and convergent synthetic strategy for making substrate-based inhibitors. One of the 14 peptides showed inhibitory activity at KDM4C demonstrating the need for an iron chelator in the pentapeptide series.


Subject(s)
Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacology , Histones/chemistry , Jumonji Domain-Containing Histone Demethylases/antagonists & inhibitors , Peptides/chemical synthesis , Peptides/pharmacology , Click Chemistry , Drug Design , Enzyme Inhibitors/chemistry , Humans , Lysine/metabolism , Molecular Structure , Peptides/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...