Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
1.
Cell Death Dis ; 15(7): 475, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38961053

ABSTRACT

Deregulated apoptosis signaling is characteristic for many cancers and contributes to leukemogenesis and treatment failure in B-cell precursor acute lymphoblastic leukemia (BCP-ALL). Apoptosis is controlled by different pro- and anti-apoptotic molecules. Inhibition of anti-apoptotic molecules like B-cell lymphoma 2 (BCL-2) has been developed as therapeutic strategy. Venetoclax (VEN), a selective BCL-2 inhibitor has shown clinical activity in different lymphoid malignancies and is currently evaluated in first clinical trials in BCP-ALL. However, insensitivity to VEN has been described constituting a major clinical concern. Here, we addressed and modeled VEN-resistance in BCP-ALL, investigated the underlying mechanisms in cell lines and patient-derived xenograft (PDX) samples and identified potential strategies to overcome VEN-insensitivity. Leukemia lines with VEN-specific resistance were generated in vitro and further characterized using RNA-seq analysis. Interestingly, gene sets annotated to the citric/tricarboxylic acid cycle and the respiratory electron transport chain were significantly enriched and upregulated, indicating increased mitochondrial metabolism in VEN-resistant ALL. Metabolic profiling showed sustained high mitochondrial metabolism in VEN-resistant lines as compared to control lines. Accordingly, primary PDX-ALL samples with intrinsic VEN-insensitivity showed higher oxygen consumption and ATP production rates, further highlighting that increased mitochondrial activity is a characteristic feature of VEN-resistant ALL. VEN-resistant PDX-ALL showed significant higher mitochondrial DNA content and differed in mitochondria morphology with significantly larger and elongated structures, further corroborating our finding of augmented mitochondrial metabolism upon VEN-resistance. Using Oligomycin, an inhibitor of the complex V/ATPase subunit, we found synergistic activity and apoptosis induction in VEN-resistant BCP-ALL cell lines and PDX samples, demonstrating that acquired and intrinsic VEN-insensitivity can be overcome by co-targeting BCL-2 and the OxPhos pathway. These findings of reprogrammed, high mitochondrial metabolism in VEN-resistance and synergistic activity upon co-targeting BCL-2 and oxidative phosphorylation strongly suggest further preclinical and potential clinical evaluation in VEN-resistant BCP-ALL.


Subject(s)
Bridged Bicyclo Compounds, Heterocyclic , Drug Resistance, Neoplasm , Mitochondria , Oxidative Phosphorylation , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Sulfonamides , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Humans , Oxidative Phosphorylation/drug effects , Mitochondria/metabolism , Mitochondria/drug effects , Drug Resistance, Neoplasm/drug effects , Drug Resistance, Neoplasm/genetics , Sulfonamides/pharmacology , Precursor Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Precursor Cell Lymphoblastic Leukemia-Lymphoma/pathology , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Animals , Cell Line, Tumor , Mice , Apoptosis/drug effects , Antineoplastic Agents/pharmacology , Xenograft Model Antitumor Assays , Proto-Oncogene Proteins c-bcl-2/metabolism , Proto-Oncogene Proteins c-bcl-2/genetics
2.
Leukemia ; 36(4): 901-912, 2022 04.
Article in English | MEDLINE | ID: mdl-35031695

ABSTRACT

Targeting BCL-2, a key regulator of survival in B-cell malignancies including precursor B-cell acute lymphoblastic leukemia, has become a promising treatment strategy. However, given the redundancy of anti-apoptotic BCL-2 family proteins (BCL-2, BCL-XL, MCL-1), single targeting may not be sufficient. When analyzing the effects of BH3-mimetics selectively targeting BCL-XL and MCL-1 alone or in combination with the BCL-2 inhibitor venetoclax, heterogeneous sensitivity to either of these inhibitors was found in ALL cell lines and in patient-derived xenografts. Interestingly, some venetoclax-resistant leukemias were sensitive to the MCL-1-selective antagonist S63845 and/or BCL-XL-selective A-1331852 suggesting functional mutual substitution. Consequently, co-inhibition of BCL-2 and MCL-1 or BCL-XL resulted in synergistic apoptosis induction. Functional analysis by BH3-profiling and analysis of protein complexes revealed that venetoclax-treated ALL cells are dependent on MCL-1 and BCL-XL, indicating that MCL-1 or BCL-XL provide an Achilles heel in BCL-2-inhibited cells. The effect of combining BCL-2 and MCL-1 inhibition by venetoclax and S63845 was evaluated in vivo and strongly enhanced anti-leukemia activity was found in a pre-clinical patient-derived xenograft model. Our study offers in-depth molecular analysis of mutual substitution of BCL-2 family proteins in acute lymphoblastic leukemia and provides targets for combination treatment in vivo and in ongoing clinical studies.


Subject(s)
Antineoplastic Agents , Proto-Oncogene Proteins c-bcl-2 , Antineoplastic Agents/pharmacology , Apoptosis , Apoptosis Regulatory Proteins , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Cell Line, Tumor , Humans , Myeloid Cell Leukemia Sequence 1 Protein , bcl-X Protein/metabolism
3.
Blood ; 139(6): 859-875, 2022 02 10.
Article in English | MEDLINE | ID: mdl-34662393

ABSTRACT

Covalent Bruton tyrosine kinase (BTK) inhibitors, such as ibrutinib, have proven to be highly beneficial in the treatment of chronic lymphocytic leukemia (CLL). Interestingly, the off-target inhibition of IL-2-inducible T-cell kinase (ITK) by ibrutinib may also play a role in modulating the tumor microenvironment, potentially enhancing the treatment benefit. However, resistance to covalently binding BTK inhibitors can develop as the result of a mutation in cysteine 481 of BTK (C481S), which prevents irreversible binding of the drugs. In the present study we performed preclinical characterization of vecabrutinib, a next-generation noncovalent BTK inhibitor that has ITK-inhibitory properties similar to those of ibrutinib. Unlike ibrutinib and other covalent BTK inhibitors, vecabrutinib showed retention of the inhibitory effect on C481S BTK mutants in vitro, similar to that of wild-type BTK. In the murine Eµ-TCL1 adoptive transfer model, vecabrutinib reduced tumor burden and significantly improved survival. Vecabrutinib treatment led to a decrease in CD8+ effector and memory T-cell populations, whereas the naive populations were increased. Of importance, vecabrutinib treatment significantly reduced the frequency of regulatory CD4+ T cells in vivo. Unlike ibrutinib, vecabrutinib treatment showed minimal adverse impact on the activation and proliferation of isolated T cells. Lastly, combination treatment with vecabrutinib and venetoclax augmented treatment efficacy, significantly improved survival, and led to favorable reprogramming of the microenvironment in the murine Eµ-TCL1 model. Thus, noncovalent BTK/ITK inhibitors, such as vecabrutinib, may be efficacious in C481S BTK mutant CLL while preserving the T-cell immunomodulatory function of ibrutinib.


Subject(s)
Agammaglobulinaemia Tyrosine Kinase , Leukemia, Lymphocytic, Chronic, B-Cell , Protein Kinase Inhibitors , Protein-Tyrosine Kinases , Animals , Female , Humans , Agammaglobulinaemia Tyrosine Kinase/antagonists & inhibitors , Cell Line, Tumor , Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy , Leukemia, Lymphocytic, Chronic, B-Cell/pathology , Mice, Inbred C57BL , Models, Molecular , Protein Kinase Inhibitors/therapeutic use , Protein-Tyrosine Kinases/antagonists & inhibitors , Tumor Burden/drug effects
5.
Blood ; 138(20): 1953-1965, 2021 11 18.
Article in English | MEDLINE | ID: mdl-34098582

ABSTRACT

We previously identified an association of rapid engraftment of patient-derived leukemia cells transplanted into NOD/SCID mice with early relapse in B-cell precursor acute lymphoblastic leukemia (BCP-ALL). In a search for the cellular and molecular profiles associated with this phenotype, we investigated the expression of microRNAs (miRNAs) in different engraftment phenotypes and patient outcomes. We found high expression of miR-497 and miR-195 (hereafter miR-497/195) in patient-derived xenograft samples with slow engraftment derived from patients with favorable outcome. In contrast, epigenetic repression and low expression of these miRNAs was observed in rapidly engrafting samples associated with early relapse. Overexpression of miR-497/195 in patient-derived leukemia cells suppressed in vivo growth of leukemia and prolonged recipient survival. Conversely, inhibition of miR-497/195 led to increased leukemia cell growth. Key cell cycle regulators were downregulated upon miR-497/195 overexpression, and we identified cyclin-dependent kinase 4 (CDK4)- and cyclin-D3 (CCND3)-mediated control of G1/S transition as a principal mechanism for the suppression of BCP-ALL progression by miR-497/195. The critical role for miR-497/195-mediated cell cycle regulation was underscored by finding (in an additional independent series of patient samples) that high expression of miR-497/195 together with a full sequence for CDKN2A and CDKN2B (CDKN2A/B) was associated with excellent outcome, whereas deletion of CDKN2A/B together with low expression of miR-497/195 was associated with clearly inferior relapse-free survival. These findings point to the cooperative loss of cell cycle regulators as a new prognostic factor indicating possible therapeutic targets for pediatric BCP-ALL.


Subject(s)
Cyclin-Dependent Kinase Inhibitor p15/genetics , Cyclin-Dependent Kinase Inhibitor p16/genetics , MicroRNAs/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Animals , Child , Epigenesis, Genetic , Gene Expression Regulation, Leukemic , Humans , Mice, Inbred NOD , Mice, SCID , Tumor Cells, Cultured
6.
Leukemia ; 35(2): 389-403, 2021 02.
Article in English | MEDLINE | ID: mdl-32409690

ABSTRACT

T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematological cancer characterized by skewed epigenetic patterns, raising the possibility of therapeutically targeting epigenetic factors in this disease. Here we report that among different cancer types, epigenetic factor TET1 is highly expressed in T-ALL and is crucial for human T-ALL cell growth in vivo. Knockout of TET1 in mice and knockdown in human T cell did not perturb normal T-cell proliferation, indicating that TET1 expression is dispensable for normal T-cell growth. The promotion of leukemic growth by TET1 was dependent on its catalytic property to maintain global 5-hydroxymethylcytosine (5hmC) marks, thereby regulate cell cycle, DNA repair genes, and T-ALL associated oncogenes. Furthermore, overexpression of the Tet1-catalytic domain was sufficient to augment global 5hmC levels and leukemic growth of T-ALL cells in vivo. We demonstrate that PARP enzymes, which are highly expressed in T-ALL patients, participate in establishing H3K4me3 marks at the TET1 promoter and that PARP1 interacts with the TET1 protein. Importantly, the growth related role of TET1 in T-ALL could be antagonized by the clinically approved PARP inhibitor Olaparib, which abrogated TET1 expression, induced loss of 5hmC marks, and antagonized leukemic growth of T-ALL cells, opening a therapeutic avenue for this disease.


Subject(s)
DNA Methylation , DNA-Binding Proteins/physiology , Gene Expression Regulation, Leukemic , Mixed Function Oxygenases/metabolism , Phthalazines/pharmacology , Piperazines/pharmacology , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/pathology , Proto-Oncogene Proteins/metabolism , Proto-Oncogene Proteins/physiology , Animals , Apoptosis , Cell Proliferation , Histones , Humans , Mice , Mice, Inbred NOD , Mice, Knockout , Mice, SCID , Mixed Function Oxygenases/genetics , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Promoter Regions, Genetic , Proto-Oncogene Proteins/genetics , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
7.
Haematologica ; 105(1): 170-181, 2020 01.
Article in English | MEDLINE | ID: mdl-31073076

ABSTRACT

Alterations of the tumor suppressor gene TP53 are found in different cancers, in particular in carcinomas of adults. In pediatric acute lymphoblastic leukemia (ALL), TP53 mutations are infrequent but enriched at relapse. As in most cancers, mainly DNA-binding domain missense mutations are found, resulting in accumulation of mutant p53, poor therapy response, and inferior outcome. Different strategies to target mutant p53 have been developed including reactivation of p53's wildtype function by the small molecule APR-246. We investigated TP53 mutations in cell lines and 62 B-cell precursor ALL samples and evaluated the activity of APR-246 in TP53-mutated or wildtype ALL. We identified cases with TP53 missense mutations, high (mutant) p53 expression and insensitivity to the DNA-damaging agent doxorubicin. In TP53-mutated ALL, APR-246 induced apoptosis showing strong anti-leukemia activity. APR-246 restored mutant p53 to its wildtype conformation, leading to pathway activation with induction of transcriptional targets and re-sensitization to genotoxic therapy in vitro and in vivo In addition, induction of oxidative stress contributed to APR-246-mediated cell death. In a preclinical model of patient-derived TP53-mutant ALL, APR-246 reduced leukemia burden and synergized strongly with the genotoxic agent doxorubicin, leading to superior leukemia-free survival in vivo Thus, targeting mutant p53 by APR-246, restoring its tumor suppressive function, seems to be an effective therapeutic strategy for this high-risk group of TP53-mutant ALL.


Subject(s)
Precursor Cell Lymphoblastic Leukemia-Lymphoma , Tumor Suppressor Protein p53 , Adult , Apoptosis/genetics , Child , Doxorubicin , Humans , Mutation , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Tumor Suppressor Protein p53/genetics
8.
Int J Cancer ; 146(11): 3219-3231, 2020 06 01.
Article in English | MEDLINE | ID: mdl-31749151

ABSTRACT

Second mitochondria-derived activator of caspase (SMAC) mimetics (SMs) targeting inhibitor of apoptosis proteins (IAPs) activate cell death pathways, and are currently being evaluated in clinical trials. Their successful therapeutic implementation requires upfront identification of patients who could benefit from a SM-based treatment but biomarkers for SM sensitivity have not yet been described. Here, we analyzed the intrinsic activity of two monovalent (AT406 and LCL161) and two bivalent (Birinapant and BV6) SMs on unselected patient-derived pediatric precursor B-cell acute lymphoblastic leukemia (BCP-ALL) identifying a subset of patient samples to be particularly sensitive to SM-induced cell death. This subset was defined by a characteristic gene expression signature with 127 differentially regulated genes, amongst them TNFRSF1A encoding TNFR1, and a critical role of TNFR1 in SM-induced cell death in sensitive BCP-ALL was confirmed on the functional level. Interestingly, samples with intermediate or low sensitivity to SMs were sensitized to SM-induced cell death by inhibition of caspases using zVAD.fmk or Emricasan, a pan-caspase inhibitor in clinical trials. When we compared our expression data to published data sets, we identified an overlap of four genes to be commonly differentially regulated in SM-sensitive BCP-ALL, that is, TSPAN7, DIPK1C, MTX2 and, again, TNFRSF1A. Functional testing revealed that this set of genes identified samples with high sensitivity to SM treatment. In summary, our data suggest using this gene signature as biomarker predicting response to SM treatment and point to the development of new combinatorial treatments consisting of SMs and pan-caspase inhibitors for a successful clinical implementation of SMs in treatment of BCP-ALL.


Subject(s)
Apoptosis Regulatory Proteins/antagonists & inhibitors , Azocines/pharmacology , Benzhydryl Compounds/pharmacology , Dipeptides/pharmacology , Indoles/pharmacology , Inhibitor of Apoptosis Proteins/antagonists & inhibitors , Mitochondrial Proteins/antagonists & inhibitors , Oligopeptides/pharmacology , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Thiazoles/pharmacology , Animals , Apoptosis/drug effects , Caspase Inhibitors/pharmacology , Cell Line, Tumor , Female , Humans , Mice , Mice, Inbred NOD , Mice, SCID , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor Cells, B-Lymphoid/metabolism , Receptors, Tumor Necrosis Factor, Type I/genetics , Receptors, Tumor Necrosis Factor, Type I/metabolism , Xenograft Model Antitumor Assays
9.
Blood Adv ; 3(20): 3143-3156, 2019 10 22.
Article in English | MEDLINE | ID: mdl-31648313

ABSTRACT

Survival of patients with pediatric acute lymphoblastic leukemia (ALL) after allogeneic hematopoietic stem cell transplantation (allo-SCT) is mainly compromised by leukemia relapse, carrying dismal prognosis. As novel individualized therapeutic approaches are urgently needed, we performed whole-exome sequencing of leukemic blasts of 10 children with post-allo-SCT relapses with the aim of thoroughly characterizing the mutational landscape and identifying druggable mutations. We found that post-allo-SCT ALL relapses display highly diverse and mostly patient-individual genetic lesions. Moreover, mutational cluster analysis showed substantial clonal dynamics during leukemia progression from initial diagnosis to relapse after allo-SCT. Only very few alterations stayed constant over time. This dynamic clonality was exemplified by the detection of thiopurine resistance-mediating mutations in the nucleotidase NT5C2 in 3 patients' first relapses, which disappeared in the post-allo-SCT relapses on relief of selective pressure of maintenance chemotherapy. Moreover, we identified TP53 mutations in 4 of 10 patients after allo-SCT, reflecting acquired chemoresistance associated with selective pressure of prior antineoplastic treatment. Finally, in 9 of 10 children's post-allo-SCT relapse, we found alterations in genes for which targeted therapies with novel agents are readily available. We could show efficient targeting of leukemic blasts by APR-246 in 2 patients carrying TP53 mutations. Our findings shed light on the genetic basis of post-allo-SCT relapse and may pave the way for unraveling novel therapeutic strategies in this challenging situation.


Subject(s)
Biomarkers, Tumor , Clonal Evolution/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/etiology , Precursor Cell Lymphoblastic Leukemia-Lymphoma/pathology , Selection, Genetic , Child , Child, Preschool , Computational Biology/methods , DNA Repair , Female , Hematopoietic Stem Cell Transplantation/methods , Humans , Immunophenotyping , Infant , Male , Mutation , Polymorphism, Single Nucleotide , Precursor Cell Lymphoblastic Leukemia-Lymphoma/therapy , Recurrence , Transplantation, Homologous , Tumor Suppressor Protein p53/genetics
10.
Cell Death Dis ; 10(8): 571, 2019 07 29.
Article in English | MEDLINE | ID: mdl-31358732

ABSTRACT

Deregulated cell death pathways contribute to leukemogenesis and treatment failure in B-cell precursor acute lymphoblastic leukemia (BCP-ALL). Intrinsic apoptosis signaling is regulated by different proapoptotic and antiapoptotic molecules: proapoptotic BCL-2 homology domain 3 (BH3) proteins activate prodeath molecules leading to cellular death, while antiapoptotic molecules including B-cell lymphoma 2 (BCL-2) prevent activation of prodeath proteins and counter-regulate apoptosis induction. Inhibition of these antiapoptotic regulators has become a promising strategy for anticancer treatment, but variable anticancer activities in different malignancies indicate the need for upfront identification of responsive patients. Here, we investigated the activity of the BCL-2 inhibitor venetoclax (VEN, ABT-199) in B-cell precursor acute lymphoblastic leukemia and found heterogeneous sensitivities in BCP-ALL cell lines and in a series of patient-derived primografts. To identify parameters of sensitivity and resistance, we evaluated genetic aberrations, gene-expression profiles, expression levels of apoptosis regulators, and functional apoptosis parameters analyzed by mitochondrial profiling using recombinant BH3-like peptides. Importantly, ex vivo VEN sensitivity was most accurately associated with functional BCL-2 dependence detected by BH3 profiling. Modeling clinical application of VEN in a preclinical trial in a set of individual ALL primografts, we identified that leukemia-free survival of VEN treated mice was precisely determined by functional BCL-2 dependence. Moreover, the predictive value of ex vivo measured functional BCL-2 dependence for preclinical in vivo VEN response was confirmed in an independent set of primograft ALL including T- and high risk-ALL. Thus, integrative analysis of the apoptosis signaling indicating mitochondrial addiction to BCL-2 accurately predicts antileukemia activity of VEN, robustly identifies VEN-responsive patients, and provides information for stratification and clinical guidance in future clinical applications of VEN in patients with ALL.


Subject(s)
Apoptosis/drug effects , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Proto-Oncogene Proteins c-bcl-2/genetics , Sulfonamides/pharmacology , Animals , B-Lymphocytes/drug effects , B-Lymphocytes/pathology , BH3 Interacting Domain Death Agonist Protein/genetics , Cell Line, Tumor , Cell Proliferation/drug effects , Female , Gene Expression Regulation, Leukemic/drug effects , Heterografts , Humans , Male , Mice , Mitochondria/drug effects , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/pathology , Signal Transduction/drug effects
11.
Haematologica ; 103(6): 1008-1017, 2018 06.
Article in English | MEDLINE | ID: mdl-29519870

ABSTRACT

In contrast to well-established hierarchical concepts of tumor stem cells, leukemia-initiating cells in B-cell precursor acute lymphoblastic leukemia have not yet been phenotypically identified. Different subpopulations, as defined by surface markers, have shown equal abilities to reconstitute leukemia upon transplantation into immunodeficient mice. Using a non-obese diabetes/severe combined immunodeficiency human acute lymphoblastic leukemia mouse model and cell cycle analysis annotating cells to distinct cycle phases, we functionally characterized leukemia-initiating cells and found that cells in all stages of the cell cycle are able to reconstitute leukemia in vivo, with early cycling cells (G1blow population) exhibiting the highest leukemia-initiating potential. Interestingly, cells of the G2/M compartment, i.e. dividing cells, were less effective in leukemia reconstitution. Moreover, G1blow cells were more resistant to spontaneous or drug-induced cell death in vitro, were enriched for stem cell signatures and were less metabolically active, as determined by lower levels of reactive oxygen species, compared to G2/M stage cells. Our data provide new information on the biological properties of leukemia-initiating cells in B-cell precursor acute lymphoblastic leukemia and underline the concept of a stochastic model of leukemogenesis.


Subject(s)
Cell Cycle , Energy Metabolism , Leukemia/etiology , Leukemia/metabolism , Animals , Biomarkers , Cell Cycle/genetics , Disease Models, Animal , Disease Susceptibility , Gene Expression Profiling , Humans , Immunophenotyping , Leukemia/mortality , Leukemia/pathology , Mice , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Oxidative Stress , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/etiology , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/pathology , Prognosis
12.
Mol Cancer Ther ; 14(4): 889-98, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25667168

ABSTRACT

The existing treatments to cure acute leukemias seem to be nonspecific and suboptimal for most patients, drawing attention to the need of new therapeutic strategies. In the last decade the anticancer potential of poly ADP-ribose polymerase (PARP) inhibitors became apparent and now several PARP inhibitors are being developed to treat various malignancies. So far, the usage of PARP inhibitors has been mainly focused on the treatment of solid tumors and not too much about their efficacy on leukemias is known. In this study we test, for the first time on leukemic cells, a combined therapy that associates the conventional chemotherapeutic agent fluorouracil (5FU), used as a source of DNA damage, and a PARP inhibitor, rucaparib. We demonstrate the efficacy and the specificity of this combined therapy in killing both acute myeloid leukemia and acute lymphoid leukemia cells in vitro and in vivo. We clearly show that the inhibition of DNA repair induced by rucaparib is synthetic lethal with the DNA damage caused by 5FU in leukemic cells. Therefore, we propose a new therapeutic strategy able to enhance the cytotoxic effect of DNA-damaging agents in leukemia cells via inhibiting the repair of damaged DNA.


Subject(s)
Antimetabolites, Antineoplastic/pharmacology , Fluorouracil/pharmacology , Indoles/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Animals , Apoptosis/drug effects , Cell Line, Tumor , Cell Survival/drug effects , DNA Damage/drug effects , DNA Repair/drug effects , DNA Replication/drug effects , Disease Models, Animal , Drug Resistance, Neoplasm , Drug Synergism , Female , Humans , Leukemia/drug therapy , Leukemia/mortality , Leukemia/pathology , Male , Mice , Xenograft Model Antitumor Assays
13.
Oncotarget ; 6(3): 1382-95, 2015 Jan 30.
Article in English | MEDLINE | ID: mdl-25682198

ABSTRACT

Despite increasingly successful treatment of pediatric ALL, up to 20% of patients encounter relapse. By current biomarkers, the majority of relapse patients is initially not identified indicating the need for prognostic and therapeutic targets reflecting leukemia biology. We previously described that rapid engraftment of patient ALL cells transplanted onto NOD/SCID mice (short time to leukemia, TTLshort) is indicative of early patient relapse. Gene expression profiling identified genes coding for molecules involved in mTOR signaling to be associated with TTLshort/early relapse leukemia. Here, we now functionally address mTOR signaling activity in primograft ALL samples and evaluate mTOR pathway inhibition as novel treatment strategy for high-risk ALL ex vivo and in vivo. By analysis of S6-phosphorylation downstream of mTOR, increased mTOR activation was found in TTLshort/high-risk ALL, which was effectively abrogated by mTOR inhibitors resulting in decreased leukemia proliferation and growth. In a preclinical setting treating individual patient-derived ALL in vivo, mTOR inhibition alone, and even more pronounced together with conventional remission induction therapy, significantly delayed post-treatment leukemia reoccurrence in TTLshort/high-risk ALL. Thus, the TTLshort phenotype is functionally characterized by hyperactivated mTOR signaling and can effectively be targeted ex vivo and in vivo providing a novel therapeutic strategy for high-risk ALL.


Subject(s)
Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor Cell Lymphoblastic Leukemia-Lymphoma/metabolism , TOR Serine-Threonine Kinases/antagonists & inhibitors , TOR Serine-Threonine Kinases/metabolism , Animals , Child , Child, Preschool , Female , Humans , Infant , Infant, Newborn , Male , Mice , Mice, Inbred NOD , Mice, SCID , Molecular Targeted Therapy , Phosphatidylinositol 3-Kinases/metabolism , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Random Allocation , Risk Factors , TOR Serine-Threonine Kinases/genetics , Transcriptome , Xenograft Model Antitumor Assays
14.
Cancer Res ; 71(23): 7141-4, 2011 Dec 01.
Article in English | MEDLINE | ID: mdl-22088964

ABSTRACT

Over the past decade, xenografting human leukemia cells into mice with different levels of immunodeficiency, with or without preconditioning, has provided an important tool to study various aspects of leukemia biology and to identify distinct clinical risk groups for evaluation of novel therapeutic strategies, as well as the possibility of amplifying human leukemia cells in vivo. Interestingly, these models using human acute lymphoblastic leukemia and acute myeloid leukemia cells as xenografts recapitulate many clinical features of the disease. Similar to the human environment (for example, in the bone marrow), transplanted leukemia cells in the murine setting are exposed to both favorable and unfavorable conditions for engraftment that may exert a distinct pressure for selection of subclones. Thus, results obtained in these models may vary depending on the experimental setup. The impact of in vivo growth of human leukemia cells on the background of a more or less hostile murine environment for leukemia biology and the course of the disease in patients are discussed in the context of the diversity of xenograft models.


Subject(s)
Disease Models, Animal , Leukemia/pathology , Neoplasm Transplantation/methods , Transplantation, Heterologous/methods , Animals , Humans , Mice , Mice, Inbred NOD , Mice, SCID , Tumor Microenvironment
15.
Cancer Cell ; 19(2): 206-17, 2011 Feb 15.
Article in English | MEDLINE | ID: mdl-21295523

ABSTRACT

We investigated the engraftment properties and impact on patient outcome of 50 pediatric acute lymphoblastic leukemia (ALL) samples transplanted into NOD/SCID mice. Time to leukemia (TTL) was determined for each patient sample engrafted as weeks from transplant to overt leukemia. Short TTL was strongly associated with high risk for early relapse, identifying an independent prognostic factor. This high-risk phenotype is reflected by a gene signature that upon validation in an independent patient cohort (n = 197) identified a high-risk cluster of patients with early relapse. Furthermore, the signature points to independent pathways, including mTOR, involved in cell growth and apoptosis. The pathways identified can directly be targeted, thereby offering additional treatment approaches for these high-risk patients.


Subject(s)
Gene Expression Profiling , Precursor Cell Lymphoblastic Leukemia-Lymphoma/pathology , Animals , Apoptosis/genetics , Child , Child, Preschool , Cohort Studies , Female , Humans , Infant , Infant, Newborn , Male , Mice , Mice, Inbred NOD , Mice, SCID , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Recurrence , Survival Analysis , Transplantation, Heterologous
16.
Blood ; 117(9): 2658-67, 2011 Mar 03.
Article in English | MEDLINE | ID: mdl-21224468

ABSTRACT

Approximately 25% of childhood acute lymphoblastic leukemias carry the ETV6/RUNX1 fusion gene. Despite their excellent initial treatment response, up to 20% of patients relapse. To gain insight into the relapse mechanisms, we analyzed single nucleotide polymorphism arrays for DNA copy number aberrations (CNAs) in 18 matched diagnosis and relapse leukemias. CNAs were more abundant at relapse than at diagnosis (mean 12.5 vs 7.5 per case; P=.01) with 5.3 shared on average. Their patterns revealed a direct clonal relationship with exclusively new aberrations at relapse in only 21.4%, whereas 78.6% shared a common ancestor and subsequently acquired distinct CNA. Moreover, we identified recurrent, mainly nonoverlapping deletions associated with glucocorticoid-mediated apoptosis targeting the Bcl2 modifying factor (BMF) (n=3), glucocorticoid receptor NR3C1 (n=4), and components of the mismatch repair pathways (n=3). Fluorescence in situ hybridization screening of additional 24 relapsed and 72 nonrelapsed ETV6/RUNX1-positive cases demonstrated that BMF deletions were significantly more common in relapse cases (16.6% vs 2.8%; P=.02). Unlike BMF deletions, which were always already present at diagnosis, NR3C1 and mismatch repair aberrations prevailed at relapse. They were all associated with leukemias, which poorly responded to treatment. These findings implicate glucocorticoid-associated drug resistance in ETV6/RUNX1-positive relapse pathogenesis and therefore might help to guide future therapies.


Subject(s)
Gene Deletion , Glucocorticoids/metabolism , Oncogene Proteins, Fusion/metabolism , Signal Transduction/genetics , Base Pair Mismatch/genetics , Child , Child, Preschool , Clone Cells , Core Binding Factor Alpha 2 Subunit , DNA Copy Number Variations/genetics , Drug Resistance, Neoplasm/genetics , Female , Gene Rearrangement, T-Lymphocyte/genetics , Humans , Infant , Male , Precursor Cell Lymphoblastic Leukemia-Lymphoma/diagnosis , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Receptors, Glucocorticoid/metabolism , Recurrence
17.
Blood ; 107(11): 4524-31, 2006 Jun 01.
Article in English | MEDLINE | ID: mdl-16467206

ABSTRACT

Deficient activation of apoptosis signaling pathways may be responsible for treatment failure in acute leukemia. Here, we address the impact of intact apoptosis signaling in 78 patients with pediatric precursor B-cell acute lymphoblastic leukemia (ALL) by analysis of 2 key apoptogenic events: caspase-3 activation and cytochrome c release in leukemia cells cultured in vitro. Both events correlated only in the group of patients who had a good response and patients in continuous remission, suggesting that intact apoptosis signaling is a characteristic for favorable outcome. By combining both parameters, we identified a novel indicator, cytochrome c-related activation of caspase-3 (CRAC). CRAC directly connects the extent of caspase-3 activation to cytochrome c release in single cells in an individual patient sample. In CRAC-positive patients, indicating proficient apoptosis signaling, the number of persisting leukemia cells on day 15 was significantly lower than in the CRAC-negative patient group (n = 27, mean 6.0% versus n = 36, mean 22.6%; P = .003). At a median follow-up of 31 months, disease-free survival was 84 months (95% CI = 76 to 91 months) and 66 months (95% CI = 52 to 80 months) for patients with positive and negative CRAC, respectively (P = .019). CRAC may serve as a functionally defined risk factor for treatment stratification.


Subject(s)
Caspases/metabolism , Cytochromes c/metabolism , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/pathology , Precursor Cell Lymphoblastic Leukemia-Lymphoma/pathology , Adolescent , Apoptosis , Caspase 3 , Cell Count , Child , Child, Preschool , Flow Cytometry , Humans , Infant , Prognosis , Recurrence , Risk Assessment , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...