Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
EMBO Mol Med ; 11(11): e10378, 2019 11 07.
Article in English | MEDLINE | ID: mdl-31566924

ABSTRACT

Current treatments in multiple sclerosis (MS) are modulating the inflammatory component of the disease, but no drugs are currently available to repair lesions. Our study identifies in MS patients the overexpression of Plexin-A1, the signalling receptor of the oligodendrocyte inhibitor Semaphorin 3A. Using a novel type of peptidic antagonist, we showed the possibility to counteract the Sema3A inhibitory effect on oligodendrocyte migration and differentiation in vitro when antagonizing Plexin-A1. The use of this compound in vivo demonstrated a myelin protective effect as shown with DTI-MRI and confirmed at the histological level in the mouse cuprizone model of induced demyelination/remyelination. This effect correlated with locomotor performances fully preserved in chronically treated animals. The administration of the peptide also showed protective effects, leading to a reduced severity of demyelination in the context of experimental autoimmune encephalitis (EAE). Hence, the disruption of the inhibitory microenvironmental molecular barriers allows normal myelinating cells to exert their spontaneous remyelinating capacity. This opens unprecedented therapeutic opportunity for patients suffering a disease for which no curative options are yet available.


Subject(s)
Multiple Sclerosis/physiopathology , Nerve Tissue Proteins/metabolism , Oligodendroglia/physiology , Receptors, Cell Surface/metabolism , Remyelination , Semaphorin-3A/metabolism , Signal Transduction , Animals , Brain/diagnostic imaging , Cell Line , Cell Movement , Cell Proliferation , Disease Models, Animal , Magnetic Resonance Imaging , Mice, Inbred C57BL , Nerve Tissue Proteins/antagonists & inhibitors , Receptors, Cell Surface/antagonists & inhibitors
2.
Methods Mol Biol ; 1493: 171-183, 2017.
Article in English | MEDLINE | ID: mdl-27787850

ABSTRACT

The axonal growth cone is a specialized structure enabling axon extension and proper guidance to its target by sensing the extracellular environment. A growth cone collapse assay is a popular approach designed to characterize the inhibitory effect of secreted guidance cues in vitro. However, the actin cytoskeleton of the growth cone is very sensitive to various factors like physical impact, temperature, and acidity of environment that may also induce responses resembling those of guidance signals. Herein, we provide an easy and reproducible method to analyze growth cone sensitivity to the prototypic guidance molecule family class 3 semaphorin. This protocol is intended to present a systematic approach that is easy to apply to any soluble factors with a potential to impact axon elongation.


Subject(s)
Axons/physiology , Growth Cones/physiology , Semaphorin-3A/physiology , Cytoskeleton/metabolism , Ganglia, Spinal/cytology , Ganglia, Spinal/metabolism , HEK293 Cells , Humans , Neurons/physiology , Reproducibility of Results
3.
Cell Adh Migr ; 10(6): 700-708, 2016 11.
Article in English | MEDLINE | ID: mdl-27906605

ABSTRACT

The Semaphorin/Neuropilin/Plexin (SNP) complexes control a wide range of biological processes. Consistently, activity deregulation of these complexes is associated with many diseases. The increasing knowledge on SNP had in turn validated these molecular complexes as novel therapeutic targets. Targeting SNP activities by small molecules, antibodies and peptides or by soluble semaphorins have been proposed as new therapeutic approach. This review is focusing on the latest demonstration of this potential and discusses some of the key questions that need to be addressed before translating SNP targeting into clinically relevant approaches.


Subject(s)
Cell Adhesion Molecules/metabolism , Drug Design , Nerve Tissue Proteins/metabolism , Neuropilins/metabolism , Semaphorins/metabolism , Animals , Antibodies, Blocking/pharmacology , Humans , Small Molecule Libraries/pharmacology
4.
Oncotarget ; 7(36): 57851-57865, 2016 09 06.
Article in English | MEDLINE | ID: mdl-27506939

ABSTRACT

The neuropilin-plexin receptor complex regulates tumor cell migration and proliferation and thus is an interesting therapeutic target. High expression of neuropilin-1 is indeed associated with a bad prognosis in glioma patients. Q-RTPCR and tissue-array analyses showed here that Plexin-A1 is highly expressed in glioblastoma and that the highest level of expression correlates with the worse survival of patients. We next identified a developmental and tumor-associated pro-angiogenic role of Plexin-A1. Hence, by using molecular simulations and a two-hybrid like assay in parallel with biochemical and cellular assays we developed a specific Plexin-A1 peptidic antagonist disrupting transmembrane domain-mediated oligomerization of the receptor and subsequent signaling and functional activity. We found that this peptide exhibits anti-tumor activity in vivo on different human glioblastoma models including glioma cancer stem cells. Thus, screening Plexin-A1 expression and targeting Plexin-A1 in glioblastoma patients exhibit diagnostic and therapeutic value.


Subject(s)
Antineoplastic Agents/pharmacology , Brain Neoplasms/pathology , Glioma/pathology , Neovascularization, Pathologic/prevention & control , Nerve Tissue Proteins/antagonists & inhibitors , Peptides/pharmacology , Receptors, Cell Surface/antagonists & inhibitors , Animals , Biomarkers, Tumor/metabolism , Brain Neoplasms/metabolism , Cell Line, Tumor , Cell Movement , Cell Proliferation , Chick Embryo , Chorioallantoic Membrane/metabolism , Glioblastoma/metabolism , Glioblastoma/pathology , Glioma/metabolism , Human Umbilical Vein Endothelial Cells , Humans , Nerve Tissue Proteins/metabolism , Protein Domains , Receptors, Cell Surface/metabolism , Tissue Array Analysis , Zebrafish
SELECTION OF CITATIONS
SEARCH DETAIL
...