Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mar Pollut Bull ; 162: 111807, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33162055

ABSTRACT

Petroleum waxes (PWs) are recognized as ubiquitously emerging marine pollutants. However, knowledge on their occurrence, particularly as persistent floaters of small size (<5 mm) in marine surface water, is scarce. For this study, 24 samples were collected in the North Sea by net-sampling (100 µm-mesh). Particles of wax-like appearance were detected at 14 stations. Similar appearing PWs from six stations with highest abundances were pooled per station and analyzed by ATR-FTIR (Attenuated total reflectance Fourier-transform infrared spectroscopy) and gas chromatography. Samples contained paraffin particles, being partly accompanied by substances like fatty acids and fatty alcohols. Using both analytical techniques provided a reliable detection of PWs and more details on their chemical composition. Furthermore, exemplarily the presence of PWs of 20-500 µm size was proven by µFTIR imaging. This study gives valuable insights into PW pollution in the North Sea, emphasizing the need for harmonized detection methods, ideally accompanying microplastics monitoring.


Subject(s)
Petroleum , Water Pollutants, Chemical , Environmental Monitoring , North Sea , Paraffin , Plastics , Spectroscopy, Fourier Transform Infrared , Water Pollutants, Chemical/analysis , Waxes
2.
Environ Pollut ; 252(Pt B): 1719-1729, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31284214

ABSTRACT

Microplastic pollution within the marine environment is of pressing concern globally. Accordingly, spatial monitoring of microplastic concentrations, composition and size distribution may help to identify sources and entry pathways, and hence allow initiating focused mitigation. Spatial distribution patterns of microplastics were investigated in two compartments of the southern North Sea by collecting sublittoral sediment and surface water samples from 24 stations. Large microplastics (500-5000 µm) were detected visually and identified using attenuated total reflection (ATR) Fourier transform infrared (FTIR) spectroscopy. The remaining sample was digested enzymatically, concentrated onto filters and analyzed for small microplastics (11-500 µm) using Focal Plane Array (FPA) FTIR imaging. Microplastics were detected in all samples with concentrations ranging between 2.8 and 1188.8 particles kg-1 for sediments and 0.1-245.4 particles m-3 for surface waters. On average 98% of microplastics were <100 µm in sediments and 86% in surface waters. The most prevalent polymer types in both compartments were polypropylene, acrylates/polyurethane/varnish, and polyamide. However, polymer composition differed significantly between sediment and surface water samples as well as between the Frisian Islands and the English Channel sites. These results show that microplastics are not evenly distributed, in neither location nor size, which is illuminating regarding the development of monitoring protocols.


Subject(s)
Environmental Monitoring/methods , Geologic Sediments/chemistry , Plastics/analysis , Water Pollutants, Chemical/analysis , North Sea , Polypropylenes/analysis , Polyurethanes/analysis , Seawater/chemistry , Spatial Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...