Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Eur Radiol ; 29(12): 7055-7062, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31264011

ABSTRACT

OBJECTIVE: Evaluation of MRI-derived cerebral 23Na concentrations in patients with migraine in comparison with healthy controls. MATERIALS AND METHODS: In this case-control study, 24 female migraine patients (mean age, 34 ± 11 years) were enrolled after evaluation of standardized questionnaires. Half (n = 12) of the cohort suffered from migraine, the other half was impaired by both migraine and tension-type headaches (TTH). The combined patient cohort was matched to 12 healthy female controls (mean age, 34 ± 11 years). All participants underwent a cerebral 23Na-magnetic resonance imaging examination at 3.0 T, which included a T1w MP-RAGE sequence and a 3D density-adapted, radial gradient echo sequence for 23Na imaging. Circular regions of interests were placed in predetermined anatomic regions: cerebrospinal fluid (CSF), gray and white matter, brain stem, and cerebellum. External 23Na reference phantoms were used to calculate the total 23Na tissue concentrations. Pearson's correlation, Kendall Tau, and Wilcoxon rank sum test were used for statistical analysis. RESULTS: 23Na concentrations of all patients in the CSF were significantly higher than in healthy controls (p < 0.001). The CSF of both the migraine and mixed migraine/TTH group showed significantly increased sodium concentrations compared to the control group (p = 0.007 and p < 0.001). Within the patient cohort, a positive correlation between pain level and TSC in the CSF (r = 0.62) could be observed. CONCLUSION: MRI-derived cerebral 23Na concentrations in the CSF of migraine patients were found to be statistically significantly higher than in healthy controls. KEY POINTS: • Cerebral sodium MRI supports the theory of ionic imbalances and may aid in the challenging pathophysiologic understanding of migraine. • Case-control study shows significantly higher sodium concentrations in cerebrospinal fluid of migraineurs. • Cerebral sodium MRI may become a non-invasive imaging tool for drugs to modulate sodium, and hence migraine, on a molecular level, and influence patient management.


Subject(s)
Magnetic Resonance Imaging/methods , Migraine Disorders/diagnosis , Phantoms, Imaging , Sodium/pharmacology , White Matter/pathology , Adult , Case-Control Studies , Female , Humans , Male , Middle Aged , Young Adult
2.
BMC Med Imaging ; 19(1): 26, 2019 04 03.
Article in English | MEDLINE | ID: mdl-30943911

ABSTRACT

BACKGROUND: Initial reports of 23Na magnetic resonance imaging (MRI) date back to the 1970s. However, methodological challenges of the technique hampered its widespread adoption for many years. Recent technical developments have overcome some of these limitations and have led to more optimal conditions for 23Na-MR imaging. In order to serve as a reliable tool for the assessment of clinical stroke or brain tumor patients, we investigated the repeatability and reproducibility of cerebral sodium (23Na) imaging in healthy subjects. METHODS: In this prospective, IRB approved study 12 consecutive healthy volunteers (8 female, age 31 ± 8.3) underwent three cerebral 23Na-MRI examinations at 3.0 T (TimTrio, Siemens Healthineers) distributed between two separate visits with an 8 day interval. For each scan a T1w MP-RAGE sequence for anatomical referencing and a 3D-density-adapted, radial GRE-sequence for 23Na-imaging were acquired using a dual-tuned (23Na/1H) head-coil. On 1 day, these scans were repeated consecutively; on the other day, the scans were performed once. 23Na-sequences were reconstructed according to the MP-RAGE sequence, allowing direct cross-referencing of ROIs. Circular ROIs were placed in predetermined anatomic regions: gray and white matter (GM, WM), head of the caudate nucleus (HCN), pons, and cerebellum. External 23Na-reference phantoms were used to calculate the tissue sodium content. RESULTS: Excellent correlation was found between repeated measurements on the same day (r2 = 0.94), as well as on a different day (r2 = 0.86). No significant differences were found based on laterality other than in the HCN (63.1 vs. 58.7 mmol/kg WW on the right (p = 0.01)). Pronounced inter-individual differences were identified in all anatomic regions. Moderate to good correlation (0.310 to 0.701) was found between the readers. CONCLUSION: Our study has shown that intra-individual 23Na-concentrations in healthy subjects do not significantly differ after repeated scans on the same day and a pre-set time interval. This confirms the repeatability and reproducibility of cerebral 23Na-imaging. However, with manual ROI placement in predetermined anatomic landmarks, fluctuations in 23Na-concentrations can be observed.


Subject(s)
Brain/diagnostic imaging , Magnetic Resonance Imaging/methods , Sodium/administration & dosage , Adult , Caudate Nucleus/diagnostic imaging , Female , Gray Matter/diagnostic imaging , Healthy Volunteers , Humans , Magnetic Resonance Imaging/instrumentation , Male , Observer Variation , Phantoms, Imaging , Pons/diagnostic imaging , Prospective Studies , Reproducibility of Results , White Matter/diagnostic imaging , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...