Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Bioorg Med Chem ; 92: 117421, 2023 09 07.
Article in English | MEDLINE | ID: mdl-37573822

ABSTRACT

The development of SAR around substituted N-piperidinyl indole-based nociceptin opioid receptor (NOP) ligands led to the discovery of a novel series of 2-substituted N-piperidinyl indoles that provide both selective NOP full agonists and bifunctional NOP full agonists-µ opioid (MOP) receptor partial agonists. 2-substituted N-piperidinyl indoles have improved potency at the NOP receptor and are NOP full agonists, compared to our previously reported 3-substituted N-piperidinyl indoles that are selective NOP partial agonists. SAR in this series of 2-substituted N-piperidinyl indoles shows that 2-substitution versus 3-substitution on the indole moiety affects their intrinsic activity and opioid receptor selectivity. Molecular docking of these 2-substituted N-piperidinyl indoles in an active-state NOP homology model and MOP receptor structures provides a rationale for the differences observed in the binding, functional profiles and selectivity of 2-substituted versus 3-substituted N-piperidinyl indoles.


Subject(s)
Analgesics, Opioid , Receptors, Opioid , Analgesics, Opioid/pharmacology , Ligands , Molecular Docking Simulation , Receptors, Opioid/agonists , Receptors, Opioid/metabolism , Opioid Peptides , Nociceptin Receptor , Indoles/pharmacology , Structure-Activity Relationship , Nociceptin
2.
AAPS J ; 23(3): 68, 2021 05 11.
Article in English | MEDLINE | ID: mdl-33974173

ABSTRACT

The nociceptin opioid receptor (NOP), the fourth member of the opioid receptor family, and its endogenous peptide ligand, nociceptin or orphanin FQ (N/OFQ), play a vital role in several central nervous system pathways regulating pain, reward, feeding, anxiety, motor control and learning/memory. Both selective NOP agonists as well as bifunctional agonists at the NOP and mu opioid receptor (MOP) have potential therapeutic applications in CNS disorders related to these processes. Using Surflex-Dock protocols, we conducted a computational structure-activity study of four scaffold classes of NOP ligands with varying NOP-MOP selectivity. By docking these compounds into the orthosteric binding sites within an active-state NOP homology model, and an active-state MOP crystal structure, the goal of this study was to use a structure-based drug design approach to modulate NOP affinity and NOP vs. MOP selectivity. We first docked four parent compounds (no side chain) to determine their binding interactions within the NOP and MOP binding pockets. Various polar sidechains were added to the heterocyclic A-pharmacophore to modulate NOP ligand affinity. The substitutions mainly contained a 1-2 carbon chain with a polar substituent such as an amine, alcohol, sulfamide, or guanidine. The SAR analysis is focused on the impact of structural changes in the sidechain, such as chain length, hydrogen bonding capability, and basic vs neutral functional groups on binding affinity and selectivity at both NOP and MOP receptors. This study highlights structural modifications that can be leveraged to rationally design both selective NOP and bifunctional NOP-MOP agonists with different ratios of functional efficacy.


Subject(s)
Drug Design , Receptors, Opioid, mu/agonists , Receptors, Opioid/agonists , Binding Sites , Ligands , Molecular Docking Simulation , Molecular Structure , Receptors, Opioid/metabolism , Receptors, Opioid/ultrastructure , Receptors, Opioid, mu/metabolism , Receptors, Opioid, mu/ultrastructure , Sequence Homology, Amino Acid , Structure-Activity Relationship , Nociceptin Receptor
3.
J Med Chem ; 63(5): 2688-2704, 2020 03 12.
Article in English | MEDLINE | ID: mdl-31951130

ABSTRACT

A novel series of C(3)-substituted piperdinylindoles were developed as nociceptin opioid receptor (NOP) partial agonists to explore a pharmacological hypothesis that NOP partial agonists would afford a dual pharmacological action of attenuating Parkinson's disease (PD) motor symptoms and development of levodopa-induced dyskinesias. SAR around the C-3 substituents investigated effects on NOP binding, intrinsic activity, and selectivity and showed that while the C(3)-substituted indoles are selective, high affinity NOP ligands, the steric, polar, and cationic nature of the C-3 substituents affected intrinsic activity to afford partial agonists with a range of efficacies. Compounds 4, 5, and 9 with agonist efficacies between 25% and 35% significantly attenuated motor deficits in the 6-OHDA-hemilesioned rat model of PD. Further, unlike NOP antagonists, which appear to worsen dyskinesia expression, these NOP partial agonists did not attenuate or worsen dyskinesia expression. The NOP partial agonists and their SAR reported here may be useful to develop nondopaminergic treatments for PD.


Subject(s)
Antiparkinson Agents/therapeutic use , Indoles/therapeutic use , Parkinson Disease/drug therapy , Receptors, Opioid/agonists , Animals , Antiparkinson Agents/chemistry , Antiparkinson Agents/pharmacokinetics , Caco-2 Cells , Disease Models, Animal , Humans , Indoles/chemistry , Indoles/pharmacokinetics , Male , Parkinson Disease/metabolism , Parkinson Disease/physiopathology , Piperidines/chemistry , Piperidines/pharmacokinetics , Piperidines/therapeutic use , Rats , Rats, Sprague-Dawley , Receptors, Opioid/metabolism , Structure-Activity Relationship , Nociceptin Receptor
4.
Handb Exp Pharmacol ; 254: 37-67, 2019.
Article in English | MEDLINE | ID: mdl-31119463

ABSTRACT

The development of nonpeptide systemically active small-molecule NOP-targeted ligands has contributed tremendously to validating the NOP receptor as a promising target for therapeutics. Although a NOP-targeted compound is not yet approved for clinical use, a few NOP ligands are in clinical trials for various indications. Both successful and failed human clinical trials with NOP ligands provide opportunities for rational development of new and improved NOP-targeted compounds. A few years after the discovery of the NOP receptor in 1994, and its de-orphanization upon discovery of the endogenous peptide nociceptin/orphanin FQ (N/OFQ) in 1995, there was a significant effort in the pharmaceutical industry to discover nonpeptide NOP ligands from hits obtained from high-throughput screening campaigns of compound libraries. Depending on the therapeutic indication to be pursued, NOP agonists and antagonists were discovered, and some were optimized as clinical candidates. Advances such as G protein-coupled receptor (GPCR) structure elucidation, functional selectivity in ligand-driven GPCR activation, and multi-targeted ligands provide new scope for the rational design of novel NOP ligands fine-tuned for successful clinical translation. This article reviews the field of nonpeptide NOP ligand drug design in the context of these exciting developments and highlights new optimized nonpeptide NOP ligands possessing interesting functional profiles, which are particularly attractive for several unmet clinical applications involving NOP receptor pharmacomodulation.


Subject(s)
Narcotic Antagonists , Opioid Peptides/pharmacology , Receptors, Opioid , Drug Design , Humans , Ligands , Opioid Peptides/chemistry , Opioid Peptides/metabolism , Receptors, Opioid/metabolism
5.
Front Psychiatry ; 9: 638, 2018.
Article in English | MEDLINE | ID: mdl-30555362

ABSTRACT

Treatment of drug addiction remains an unmet medical need due to the dearth of approved pharmacotherapies. There are no approved treatments for cocaine addiction, whereas the current opioid crisis has revealed the stark reality of the limited options to treat prescription and illicit opioid abuse. Preclinical studies in rodents and nonhuman primates have shown that orphanin FQ/nociceptin (N/OFQ), the endogenous ligand for the nociceptin opioid receptor (NOP) reduces the rewarding effects of several abused substances, including opioids, psychostimulants and alcohol. A few nonpeptide small-molecule NOP agonists have also shown efficacy in attenuating the rewarding effects of various abused drugs. We previously demonstrated that a high affinity small-molecule NOP agonist AT-312 selectively reduced the rewarding effects of ethanol in the conditioned place preference paradigm in mice. In the present study, we examined if AT-312 (3 mg/kg, i.p. or s.c. respectively), would alter the rewarding action of morphine (7.5 mg/kg, s.c.) or cocaine (15 mg/kg, i.p.). The effect of AT-312 on morphine- and cocaine-induced motor stimulation was also assessed on the conditioning days. The role of the NOP receptor in the effects of AT-312 was further confirmed by conducting the place conditioning experiments in NOP knockout mice and compared to their wild-type controls. Our results showed that AT-312 significantly reduced the acquisition of morphine and cocaine CPP in wild-type mice but not in mice lacking NOP receptors. AT-312 also suppressed morphine-induced and completely abolished cocaine-induced motor stimulation in NOP wild-type mice, but not in NOP knockout mice. These results show that small-molecule NOP receptor agonists have promising efficacy for attenuating the rewarding effects of morphine and cocaine, and may have potential as pharmacotherapy for opioid and psychostimulant addiction or for treating polydrug addiction.

6.
Br J Pharmacol ; 175(5): 782-796, 2018 03.
Article in English | MEDLINE | ID: mdl-29232769

ABSTRACT

BACKGROUND AND PURPOSE: We previously showed that nociceptin/orphanin FQ opioid peptide (NOP) receptor agonists attenuate the expression of levodopa-induced dyskinesia in animal models of Parkinson's disease. We now investigate the efficacy of two novel, potent and chemically distinct NOP receptor agonists, AT-390 and AT-403, to improve Parkinsonian disabilities and attenuate dyskinesia development and expression. EXPERIMENTAL APPROACH: Binding affinity and functional efficacy of AT-390 and AT-403 at the opioid receptors were determined in radioligand displacement assays and in GTPγS binding assays respectively, conducted in CHO cells. Their anti-Parkinsonian activity was evaluated in 6-hydroxydopamine hemi-lesioned rats whereas the anti-dyskinetic properties were assessed in 6-hydroxydopamine hemi-lesioned rats chronically treated with levodopa. The ability of AT-403 to inhibit the D1 receptor-induced phosphorylation of striatal ERK was investigated. KEY RESULTS: AT-390 and AT-403 selectively improved akinesia at low doses and disrupted global motor activity at higher doses. AT-403 palliated dyskinesia expression without causing sedation in a narrow therapeutic window, whereas AT-390 delayed the appearance of abnormal involuntary movements and increased their duration at doses causing sedation. AT-403 did not prevent the priming to levodopa, although it significantly inhibited dyskinesia on the first day of administration. AT-403 reduced the ERK phosphorylation induced by SKF38393 in vitro and by levodopa in vivo. CONCLUSIONS AND IMPLICATIONS: NOP receptor stimulation can provide significant albeit mild anti-dyskinetic effect at doses not causing sedation. The therapeutic window, however, varies across compounds. AT-403 could be a potent and selective tool to investigate the role of NOP receptors in vivo.


Subject(s)
Acetamides/pharmacology , Antiparkinson Agents/pharmacology , Dyskinesia, Drug-Induced/drug therapy , Piperidines/pharmacology , Receptors, Opioid/agonists , 2,3,4,5-Tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine/antagonists & inhibitors , Acetamides/therapeutic use , Animals , Antiparkinson Agents/therapeutic use , Corpus Striatum/metabolism , Cricetinae , Extracellular Signal-Regulated MAP Kinases/metabolism , Levodopa/antagonists & inhibitors , Male , Oxidopamine , Phosphorylation/drug effects , Piperidines/therapeutic use , Radioligand Assay , Rats , Nociceptin Receptor
7.
Alcohol Clin Exp Res ; 42(2): 461-471, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29215139

ABSTRACT

BACKGROUND: Nociceptin/orphanin FQ, the endogenous peptide agonist for the opioid receptor-like receptor (also known as NOP or the nociceptin receptor), has been shown to block the acquisition and expression of ethanol (EtOH)-induced conditioned place preference (CPP). Here, we report the characterization of a novel small-molecule NOP ligand AT-312 (1-(1-((cis)-4-isopropylcyclohexyl)piperidin-4-yl)-1H-indol-2-yl)methanol) in receptor binding and GTPγS functional assays in vitro. We then investigated the effect of AT-312 on the rewarding action of EtOH in mice using the CPP paradigm. Further, using mice lacking the NOP receptor and their wild-type controls, we also examined the involvement of NOP in the effect of AT-312. Motivational effects of AT-312 alone were also assessed in the CPP paradigm. METHODS: Female mice lacking NOP and/or their wild-type controls received conditioning in the presence or absence of the NOP agonist [AT-312 (1, 3, and 10 mg/kg) or the control NOP agonist SCH221510 (10 mg/kg)] followed by saline/EtOH for 3 consecutive days (twice daily) and tested for CPP in a drug-free state on the next day. RESULTS: Our in vitro data showed that AT-312 is a high-affinity, selective NOP full agonist with 17-fold selectivity over the mu opioid receptor and >200-fold selectivity over the kappa opioid receptor. The results of our in vivo studies showed that AT-312 reduced EtOH CPP at the lowest dose (1 mg/kg) tested but completely abolished EtOH CPP at higher doses (3 or 10 mg/kg) compared to their vehicle-treated control group. AT-312 (3 mg/kg) did not alter EtOH-induced CPP in mice lacking NOP, confirming that AT-312 reduced EtOH CPP through its action at the NOP receptor. AT-312 (3 mg/kg) did not induce reward or aversion when administered alone, showing that the novel small-molecule NOP agonist shows efficacy in blocking EtOH-induced CPP via the NOP receptor. CONCLUSIONS: Together, these data suggest that small-molecule NOP agonists have the potential to reduce alcohol reward and may be promising as medications to treat alcohol addiction.


Subject(s)
Behavior, Animal/drug effects , Conditioning, Psychological/drug effects , Indoles/pharmacology , Piperidines/pharmacology , Receptors, Opioid/agonists , Animals , CHO Cells , Central Nervous System Depressants/pharmacology , Cricetulus , Ethanol/pharmacology , Humans , Mice , Mice, Knockout , Receptors, Opioid/genetics , Nociceptin Receptor
8.
Eur J Pharmacol ; 793: 1-13, 2016 Dec 15.
Article in English | MEDLINE | ID: mdl-27780725

ABSTRACT

Nociceptin/Orphanin FQ (N/OFQ) regulates several biological functions via selective activation of the N/OFQ receptor (NOP). In this study novel nonpeptide NOP ligands were characterized in vitro in receptor binding and [35S]GTPγS stimulated binding in membranes of cells expressing human NOP and classical opioid receptors, calcium mobilization assay in cells coexpressing the receptors and chimeric G proteins, bioluminescence resonance energy transfer (BRET) based assay for studying NOP receptor interaction with G protein and arrestin, the electrically stimulated mouse vas deferens and the mouse colon bioassays. The action of the AT compounds were compared with standard NOP agonists (N/OFQ and Ro 65-6570) and the NOP selective antagonist SB-612111. AT compounds displayed high NOP affinity and behaved as NOP agonists in all the functional assays consistently showing the following rank order of potency AT-127≥AT-090≥AT-035>AT-004= AT-001. AT compounds behaved as NOP full agonists in the calcium mobilization and mouse colon assays and as partial agonists in the [35S]GTPγS and BRET assays. Interestingly AT-090 and AT-127, contrary to standard nonpeptide agonists that display G protein biased agonism, behaved as an unbiased agonists. AT-090 and AT-127 displayed higher NOP selectivity than Ro 65-6570 at native mouse receptors. AT-090 and AT-127 might be useful pharmacological tools for investigating the therapeutic potential of NOP partial agonists.


Subject(s)
Cycloheptanes/pharmacology , Piperidines/pharmacology , Receptors, Opioid/agonists , Recombinant Proteins/metabolism , Animals , CHO Cells , Colon/drug effects , Colon/metabolism , Cricetinae , Cricetulus , Cycloheptanes/metabolism , HEK293 Cells , Humans , Ligands , Male , Mice , Piperidines/metabolism , Receptors, Opioid/genetics , Receptors, Opioid/metabolism , Recombinant Proteins/genetics , Vas Deferens/drug effects , Vas Deferens/metabolism , Nociceptin Receptor
9.
Tetrahedron ; 69(36): 7627-7635, 2013 Sep 09.
Article in English | MEDLINE | ID: mdl-23913988

ABSTRACT

Progress toward the cyclobutane core of bielshowskysin is reported. The core was thought to arise from a cyclopropane intermediate via a furan-mediated cyclopropane fragmentation, followed by a 1,4-Michael addition. The synthesis of the cyclopropane intermediate utilizes a Suzuki coupling reaction, an esterification with 2-diazoacetoacetic acid, and a copper catalyzed cyclopropanation. An alcohol intermediate within the synthetic route was obtained in high enantiopurity via a highly selective palladium(II)-catalyzed oxidative kinetic resolution (OKR).

10.
Chem Commun (Camb) ; (12): 1316-8, 2006 Mar 28.
Article in English | MEDLINE | ID: mdl-16538259

ABSTRACT

The formation of various alpha-diazo acetoacetic esters can be obtained in a single transformation with good to excellent yields using readily available 2-diazoacetoacetic acid.

SELECTION OF CITATIONS
SEARCH DETAIL
...