Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Radiat Oncol ; 17(1): 160, 2022 Sep 26.
Article in English | MEDLINE | ID: mdl-36163026

ABSTRACT

BACKGROUND: The standard therapy for brain metastasis was surgery combined with whole brain radiotherapy (WBRT). The latter is however, associated with important neurocognitive toxicity. To reduce this toxicity, postoperative stereotactic radiosurgery (SRS) is a promising technique. We assessed the efficacy and the tolerance to postoperative Gamma Knife radiosurgery (GK) on the tumor bed after resection of brain metastases. METHODS: Between February 2011 and December 2016, following macroscopic complete surgical resection, 64 patients and 65 surgical cavities were treated by GK in our institution. The indication for adjuvant radiosurgery was a multidisciplinary decision. The main assessment criteria considered in this study were local control, intracranial metastasis-free survival (ICMFS), overall survival and toxicity. RESULTS: Median follow-up: 11.1 months. Median time between surgery and radiosurgery: 35 days. Median dose was 20 Gy prescribed to the 50% isodose line, for a median treated volume of 5.6 cc. Four patients (7%) suffered from local recurrence. Local recurrence-free, intracranial recurrence-free and overall survival at 1 year were 97.5%, 57.6% and 62.4% respectively. In total, 23 patients (41%) suffered from intracranial recurrence outside the tumor bed. In univariate analysis: concomitant GK treatment of multiple lesions and the tumor bed was associated with a decrease in ICMFS (HR = 1.16 [1.005-1.34] p = 0.04). In multivariate analysis: a non-lung primary tumor was significantly associated with a decrease in ICMFS (HR = 8.04 [1.82-35.4] p = 0.006). An increase in performance status (PS) and in the initial number of cerebral metastases significantly reduced overall survival (HR = 5.4 [1.11-26.3] p = 0.037, HR = 2.7 [1.004-7.36] p = 0.049, respectively) and One radiation necrosis histologically proven. CONCLUSION: Our study confirmed that postoperative GK after resection of cerebral metastases is an efficient and well-tolerated technique, to treat volumes of all sizes (0.8 to 40 cc). Iterative SRS or salvage WBRT can be performed in cases of intracranial relapse, postponing WBRT with its potential side effects.


Subject(s)
Brain Neoplasms , Radiosurgery , Brain , Brain Neoplasms/radiotherapy , Brain Neoplasms/secondary , Brain Neoplasms/surgery , Humans , Neoplasm Recurrence, Local/etiology , Neoplasm Recurrence, Local/radiotherapy , Neoplasm Recurrence, Local/surgery , Radiosurgery/methods , Retrospective Studies , Salvage Therapy , Treatment Outcome
2.
STAR Protoc ; 3(3): 101600, 2022 09 16.
Article in English | MEDLINE | ID: mdl-36042886

ABSTRACT

Cell response variability is a starting point in cancer drug resistance that has been difficult to analyze because the tolerant cell states are short lived. Here, we present fate-seq, an approach to isolate single cells in their transient states of drug sensitivity or tolerance before profiling. The drug response is predicted in live cells, which are laser-captured by microdissection before any drug-induced change can alter their states. This framework enables the identification of the cell-state signatures causing differential cell decisions upon treatment. For complete details on the use and execution of this protocol, please refer to Meyer et al. (2020).


Subject(s)
Diagnostic Imaging , Microdissection , Lasers , Microdissection/methods
3.
Materials (Basel) ; 15(1)2021 Dec 24.
Article in English | MEDLINE | ID: mdl-35009271

ABSTRACT

This manuscript reports on the application of copper thermal spraying in the manufacturing process of an electrical connection between Nb3Sn cables for superconducting magnets of fusion reactors. The joint is realized through diffusion bonding of the sprayed coating of the two cables. The main requirement for such a connection is its electrical resistance, which must be below 1 nΩ at B = 8 T, I = 63.3 kA and T = 4.5 K. Micrographs of the joint prototype were taken to relate the joint resistance with its microstructure and to provide feedback on the manufacturing process. Optical microscopy (OM) was used to evaluate the grain size of the coating, presence of oxide phases and to analyze the jointed surfaces. Scanning electron microscopy (SEM) and, in particular, energy-dispersive X-ray spectroscopy (EDX) were used to confirm the elemental composition of specimens extracted from the prototype. It is shown that the copper coating has an oxide concentration of 40%. Despite this, the resistance of the prototype is 0.48 nΩ in operating conditions, as the oxides are in globular form. The contact ratio between the jointed surfaces is about 95%. In addition, residual resistivity ratio (RRR) measurements were carried out to quantify the electrical quality of the Cu coating.

4.
Br J Cancer ; 124(1): 91-101, 2021 01.
Article in English | MEDLINE | ID: mdl-33257838

ABSTRACT

The continuing efforts to exploit the death receptor agonists, such as the tumour necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL), for cancer therapy, have largely been impaired by the anti-apoptotic and pro-survival signalling pathways leading to drug resistance. Cell migration, invasion, differentiation, immune evasion and anoikis resistance are plastic processes sharing features of the epithelial-to-mesenchymal transition (EMT) that have been shown to give cancer cells the ability to escape cell death upon cytotoxic treatments. EMT has recently been suggested to drive a heterogeneous cellular environment that appears favourable for tumour progression. Recent studies have highlighted a link between EMT and cell sensitivity to TRAIL, whereas others have highlighted their effects on the induction of EMT. This review aims to explore the molecular mechanisms by which death signals can elicit an increase in response heterogeneity in the metastasis context, and to evaluate the impact of these processes on cell responses to cancer therapeutics.


Subject(s)
Epithelial-Mesenchymal Transition/physiology , Neoplasms/metabolism , Neoplasms/pathology , TNF-Related Apoptosis-Inducing Ligand/metabolism , Animals , Cell Survival/physiology , Humans , Phenotype
5.
Cell Syst ; 11(4): 367-374.e5, 2020 10 21.
Article in English | MEDLINE | ID: mdl-33099406

ABSTRACT

Non-genetic heterogeneity observed in clonal cell populations is an immediate cause of drug resistance that remains challenging to profile because of its transient nature. Here, we coupled three single-cell technologies to link the predicted drug response of a cell to its own genome-wide transcriptomic profile. As a proof of principle, we analyzed the response to tumor-necrosis-factor-related apoptosis-inducing ligand (TRAIL) in HeLa cells to demonstrate that cell dynamics can discriminate the transient transcriptional states at the origin of cell decisions such as sensitivity and resistance. Our same-cell approach, named fate-seq, can reveal the molecular factors regulating the efficacy of a drug in clonal cells, providing therapeutic targets of non-genetic drug resistance otherwise confounded in gene expression noise. A record of this paper's transparent peer review process is included in the Supplemental Information.


Subject(s)
Biomarkers, Pharmacological/analysis , Drug Resistance, Neoplasm/physiology , Single-Cell Analysis/methods , Apoptosis/drug effects , Cell Line, Tumor , Gene Expression Regulation, Neoplastic/drug effects , Genomics , HeLa Cells , Humans , Neoplasms/genetics , Neoplasms/metabolism , TNF-Related Apoptosis-Inducing Ligand/genetics , TNF-Related Apoptosis-Inducing Ligand/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...