Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 25(12)2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38928106

ABSTRACT

Lifestyle interventions can prevent type 2 diabetes (T2DM). However, some individuals do not experience anticipated improvements despite weight loss. Biomarkers to identify such individuals at early stages are lacking. Insulin-like growth factor 1 (IGF- 1) and Insulin-like growth factor binding protein 1(IGFBP-1) were shown to predict T2DM onset in prediabetes. We assessed whether these markers also predict the success of lifestyle interventions, thereby possibly guiding personalized strategies. We analyzed the fasting serum levels of IGF-1, IGFBP-1, and Insulin-like growth factor binding protein 2 (IGFBP-2) in relation to changes in metabolic and anthropometric parameters, including intrahepatic lipids (IHLs) and visceral adipose tissue (VAT) volume, measured by magnetic resonance imaging (MRI), in 345 participants with a high risk for prediabetes (54% female; aged 36-80 years). Participants were enrolled in three randomized dietary intervention trials and assessed both at baseline and one year post-intervention. Statistical analyses were performed using IBM SPSS Statistics (version 28), and significance was set at p < 0.05. Within the 1-year intervention, overall significant improvements were observed. Stratifying individuals by baseline IGF-1 and IGFBP-1 percentiles revealed significant differences: higher IGF-1 levels were associated with more favorable changes compared to lower levels, especially in VAT and IHL. Lower baseline IGFBP-1 levels were associated with greater improvements, especially in IHL and 2 h glucose. Higher bioactive IGF-1 levels might predict better metabolic outcomes following lifestyle interventions in prediabetes, potentially serving as biomarkers for personalized interventions.


Subject(s)
Biomarkers , Diabetes Mellitus, Type 2 , Insulin-Like Growth Factor Binding Protein 1 , Insulin-Like Growth Factor I , Life Style , Humans , Female , Male , Insulin-Like Growth Factor Binding Protein 1/blood , Middle Aged , Insulin-Like Growth Factor I/metabolism , Insulin-Like Growth Factor I/analysis , Aged , Adult , Diabetes Mellitus, Type 2/blood , Biomarkers/blood , Aged, 80 and over , Prediabetic State/blood , Prediabetic State/therapy , Intra-Abdominal Fat/metabolism , Insulin-Like Growth Factor Binding Protein 2/blood
2.
Nutrients ; 16(7)2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38613089

ABSTRACT

We assessed the effect of a dietary pattern rich in unsaturated fatty acids (UFA), protein and fibers, without emphasizing energy restriction, on visceral adipose tissue (VAT) and cardiometabolic risk profile. Within the 36-months randomized controlled NutriAct trial, we randomly assigned 502 participants (50-80 years) to an intervention or control group (IG, CG). The dietary pattern of the IG includes high intake of mono-/polyunsaturated fatty acids (MUFA/PUFA 15-20% E/10-15% E), predominantly plant protein (15-25% E) and fiber (≥30 g/day). The CG followed usual care with intake of 30% E fat, 55% E carbohydrates and 15% E protein. Here, we analyzed VAT in a subgroup of 300 participants via MRI at baseline and after 12 months, and performed further metabolic phenotyping. A small but comparable BMI reduction was seen in both groups (mean difference IG vs. CG: -0.216 kg/m2 [-0.477; 0.045], partial η2 = 0.009, p = 0.105). VAT significantly decreased in the IG but remained unchanged in the CG (mean difference IG vs. CG: -0.162 L [-0.314; -0.011], partial η2 = 0.015, p = 0.036). Change in VAT was mediated by an increase in PUFA intake (ß = -0.03, p = 0.005) and induced a decline in LDL cholesterol (ß = 0.11, p = 0.038). The NutriAct dietary pattern, particularly due to high PUFA content, effectively reduces VAT and cardiometabolic risk markers, independent of body weight loss.


Subject(s)
Cardiovascular Diseases , Intra-Abdominal Fat , Humans , Cholesterol, LDL , Dietary Patterns , Fatty Acids, Unsaturated , Cardiovascular Diseases/prevention & control
3.
Clin Nutr ; 42(4): 467-476, 2023 04.
Article in English | MEDLINE | ID: mdl-36857956

ABSTRACT

AIMS: Amino acids powerfully release glucagon but their contribution to postprandial hyperglucagonemia in type 2 diabetes remains unclear. Exogenously applied GIP stimulates, while GLP-1 inhibits, glucagon secretion in humans. However, their role in mixed meals is unclear, which we therefore characterized. METHODS: In three experiments, participants with type 2 diabetes and obese controls randomly received different loads of sugars and/or proteins. In the first experiment, participants ingested the rapidly cleaved saccharose (SAC) or slowly cleaved isomaltulose (ISO) which is known to elicit opposite profiles of GIP and GLP-1 secretion. In the second one participants received test meals which contained saccharose or isomaltulose in combination with milk protein. The third set of participants underwent randomized oral protein tests with whey protein or casein. Incretins, glucagon, C-peptide, and insulin were profiled by specific immunological assays. RESULTS: 50 g of the sugars alone suppressed glucagon in controls but slightly less in type 2 diabetes patients. Participants with type 2 diabetes showed excessive glucagon responses within 15 min and lasting over 3 h, while the obese controls showed small initial and delayed greater glucagon responses to mixed meals. The release of GIP was significantly faster and greater with SAC compared to ISO, while GLP-1 showed an inverse pattern. The glucagon responses to whey or casein were only moderately increased in type 2 diabetes patients without a left shift of the dose response curve. CONCLUSIONS: The rapid hypersecretion of glucagon after mixed meals in type 2 diabetes patients compared to controls is unaffected by endogenous incretins. The defective suppression of glucagon by glucose combined with hypersecretion to protein is required for the exaggerated response. CLINICAL TRIALS NUMBERS: NCT03806920, NCT02219295, NCT04564391.


Subject(s)
Diabetes Mellitus, Type 2 , Incretins , Humans , Diabetes Mellitus, Type 2/metabolism , Glucagon , Sugars , Caseins , Glucagon-Like Peptide 1/metabolism , Insulin , Meals , Obesity , Sucrose , Blood Glucose/metabolism
4.
Am J Clin Nutr ; 117(4): 785-793, 2023 04.
Article in English | MEDLINE | ID: mdl-36804020

ABSTRACT

BACKGROUND: Short-term trials indicate improvement of intrahepatic lipids (IHLs) and metabolism by dietary protein or unsaturated fatty acids (UFAs) beyond weight loss. OBJECTIVES: We aimed to assess the effect of a dietary intervention high in protein and UFAs on IHLs and metabolic outcome after 12 mo, as long-term effects of such a combined intervention are unknown. METHODS: Within a 36-mo randomized controlled trial, eligible subjects (aged 50 to 80 y, ≥1 risk factor for unhealthy aging) were randomly assigned to either intervention group (IG) with high intake of mono-/poly-UFAs [15-20 percent of total energy (%E)/10%-15%E, respectively], plant protein (15%-25%E), and fiber (≥30 g/d), or control group [CG, usual care, dietary recommendations of the German Nutrition Society (fat 30%E/carbohydrates 55%E/protein 15%E)]. Stratification criteria were sex, known cardiovascular disease, heart failure, arterial hypertension, type 2 diabetes, and cognitive or physical impairment. Nutritional counseling and supplementation of foods mirroring the intended dietary pattern were performed in the IG. Diet-induced effects on IHLs, analyzed by magnetic resonance spectroscopy, as well as on lipid and glucose metabolism were predefined secondary endpoints. RESULTS: IHL content was analyzed in 346 subjects without significant alcohol consumption at baseline and in 258 subjects after 12 mo. Adjusted for weight loss, sex, and age, we observed a comparable decline of IHLs in IG and CG (-33.3%; 95% CI: -49.3, -12.3%; n = 128 compared with -21.8%; 95% CI: -39.7, 1.5%; n = 130; P = 0.179), an effect that became significant by comparing adherent IG subjects to adherent CG subjects (-42.1%; 95% CI: -58.1, -20.1%; n = 88 compared with -22.2%; 95% CI: -40.7, 2.0%; n = 121; P = 0.013). Compared with the CG, decline of LDL cholesterol (LDL-C) and total cholesterol (TC) was stronger in the IG (for LDL-C P = 0.019, for TC P = 0.010). Both groups decreased in triglycerides and insulin resistance (P for difference between groups P = 0.799 and P = 0.124, respectively). CONCLUSIONS: Diets enriched with protein and UFAs have beneficial long-term effects on liver fat and lipid metabolism in adherent older subjects. This study was registered at the German Clinical Trials Register, https://www.drks.de/drks_web/setLocale_EN.do, DRKS00010049. Am J Clin Nutr 20XX;xx:xx-xx.


Subject(s)
Diabetes Mellitus, Type 2 , Fats, Unsaturated , Humans , Cholesterol, LDL , Fatty Acids, Unsaturated , Aging , Liver , Weight Loss
5.
Nutrients ; 14(22)2022 Nov 09.
Article in English | MEDLINE | ID: mdl-36432409

ABSTRACT

BACKGROUND: T2DM heterogeneity affects responsiveness to lifestyle treatment. Beta-cell failure and nonalcoholic fatty liver disease (NAFLD) independently predict T2DM, but NAFLD inconsistently predicts metabolic response to lifestyle intervention. AIM: We attempt to replicate a prediction model deducted from the Tübinger Lifestyle Intervention Program by assessing similar metabolic factors to predict conversion to normal glucose regulation (NGR) in a comparable lifestyle intervention trial. METHODS: In the Optimal Fiber Trial (OptiFiT), 131 Caucasian participants with prediabetes completed a one-year lifestyle intervention program and received a fiber or placebo supplement. We compared baseline parameters for responders and non-responders, assessed correlations of major metabolic changes and conducted a logistic regression analysis for predictors of remission to NGR. RESULTS: NGR was achieved by 33 participants, respectively. At baseline, for the placebo group only, 1 h and 2 h glucose levels, glucose AUC and Cederholm index predicted conversion to NGR. HOMA-beta, HOMA-IR or liver fat indices did not differ between responders and non-responders of the placebo or the fiber group. Changes in waist circumference or fatty liver index correlated with changes in glycemia and insulin resistance, but not with changes in insulin secretion. Insulin-resistant NAFLD did not predict non-response. Differences in compliance did not explain the results. CONCLUSIONS: Higher post-challenge glucose levels strongly predicted the metabolic non-response to complex lifestyle intervention in our cohort. Depending on the specific intervention and the investigated cohort, fasting glucose levels and insulin sensitivity might contribute to the risk pattern. Beta-cell function did not improve in accordance with other metabolic improvements, qualifying as a potential risk factor for non-response. We could not replicate previous data suggesting that an insulin-resistant fatty liver is a specific risk factor for treatment failure. Replication studies are required.


Subject(s)
Diabetes Mellitus, Type 2 , Insulin Resistance , Non-alcoholic Fatty Liver Disease , Humans , Non-alcoholic Fatty Liver Disease/therapy , Non-alcoholic Fatty Liver Disease/metabolism , Life Style , Insulin/metabolism , Blood Glucose/metabolism , Diabetes Mellitus, Type 2/metabolism
6.
Eur J Endocrinol ; 187(4): 555-565, 2022 Oct 01.
Article in English | MEDLINE | ID: mdl-36005859

ABSTRACT

Objectives: Some individuals develop type 2 diabetes mellitus (T2DM) despite significant metabolic improvements through lifestyle intervention. We tested the hypotheses that insulin growth factor 1 (IGF1) and its binding proteins 1 and 2 predict the onset of T2DM in prediabetes patients and determine the capacity for metabolic regeneration. Design: We measured fasting serum IGF1, insulin growth factor-binding protein 1 (IGFBP1) and IGFBP2 in three randomized controlled lifestyle intervention trials, covering at least 1 year of intervention period and 1 year of additional follow-up. Methods: Within a sample of 414 high-risk prediabetes patients (58% women; 28-80 years), we analyzed fasting serum concentrations of IGF1, IGFBP1 and IGFBP2 in relation to diabetes incidence and metabolic parameters over 2 years. Three hundred and forty-five subjects finished the first year of intervention. Results: The interventions significantly improved body weight (BMI: -3.24%, P < 0.001), liver fat (-36.8%, P < 0.001), insulin sensitivity (IS) (homeostatic model assessment-insulin resistance: -6.3%, P < 0.001) and insulin secretion (disposition index: +35%, P < 0.001) in the cohort. Fourteen percent developed T2DM within 2 years. Mean IGFBP1 levels at baseline were lower in prediabetes compared to a healthy population. Also, prediabetes patients with obesity and nonalcoholic fatty liver disease had lower IGFBP1. Those with impaired glucose tolerance had higher IGFBP1 compared to those with only impaired fasting glucose. Baseline IGF1 was lower (122.5 vs 146.6 µg/L) and IGFBP1 was higher (3.32 vs 2.09 µg/L) in subjects who developed T2DM (n = 57), resulting in a significant prediction of diabetes incidence (hazard ratio (HR) IGF1: 0.991 µg/L, P = 0.003; HR IGFBP1: 1.061 µg/L, P = 0.002). This translates into a 20% and 9% difference in T2DM incidence for IGF1 and IGFBP1, respectively. Despite reduced weight, visceral fat and hepatic fat in response to 1 year of lifestyle intervention, those who developed T2DM had not improved insulin sensitivity, glucose tolerance or IGFBP1. Conclusions: Lower IGF1 and higher IGFBP1 in prediabetes predicted the incidence of T2DM, indicating an impairment of beta-cell function, which explains the unresponsiveness to lifestyle intervention.


Subject(s)
Diabetes Mellitus, Type 2 , Insulin Resistance , Prediabetic State , Adult , Aged , Aged, 80 and over , Blood Glucose/metabolism , Diabetes Mellitus, Type 2/epidemiology , Diabetes Mellitus, Type 2/metabolism , Female , Glucose , Humans , Insulin , Insulin-Like Growth Factor Binding Protein 1 , Insulin-Like Growth Factor I/metabolism , Male , Middle Aged , Prediabetic State/epidemiology
7.
Clin Oral Investig ; 26(3): 3151-3166, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35006293

ABSTRACT

OBJECTIVES: This study's aim was to investigate the safety and performance of a self-assembling peptide matrix (SAPM) P11-4 for the treatment of periodontal disease in a controlled pre-clinical study. MATERIALS AND METHODS: Acute buccal bony dehiscence defects (LxW: 5 × 3 mm) were surgically created on the distal root of four teeth on one mandible side of 7 beagle dogs followed by another identical surgery 8 weeks later on the contralateral side. SAPM P11-4 (with and without root conditioning with 24% EDTA (T1, T2)), Emdogain® (C) and a sham intervention (S) were randomly applied on the four defects at each time point. Four weeks after the second surgery and treatment, the animals were sacrificed, the mandibles measured by micro-computed tomography (µ-CT) and sections of the tissue were stained and evaluated histologically. RESULTS: Clinically and histologically, no safety concerns or pathological issues due to the treatments were observed in any of the study groups at any time point. All groups showed overall similar results after 4 and 12 weeks of healing regarding new cementum, functionality of newly formed periodontal ligament and recovery of height and volume of the new alveolar bone and mineral density. CONCLUSION: A controlled clinical study in humans should be performed in a next step as no adverse effects or safety issues, which might affect clinical usage of the product, were observed. CLINICAL RELEVANCE: The synthetic SAPM P11-4 may offer an alternative to the animal-derived product Emdogain® in the future.


Subject(s)
Guided Tissue Regeneration, Periodontal , Oligopeptides , Periodontal Ligament , Alveolar Bone Loss/diagnostic imaging , Alveolar Bone Loss/pathology , Alveolar Bone Loss/surgery , Animals , Bone Regeneration , Dental Cementum , Dogs , Guided Tissue Regeneration, Periodontal/veterinary , Mandible/surgery , Oligopeptides/adverse effects , Periodontal Ligament/pathology , Tooth Root/surgery , X-Ray Microtomography
8.
Mol Nutr Food Res ; 65(12): e2000991, 2021 06.
Article in English | MEDLINE | ID: mdl-33909947

ABSTRACT

SCOPE: The Optimal Fibre Trial (OptiFiT) investigates metabolic effects of insoluble cereal fibre in subjects with impaired glucose tolerance (IGT), showing moderate glycemic and anti-inflammatory benefits, especially in subjects with an obesity-related phenotype. An OptiFiT sub-group is analysed for effects on body fat distribution. METHODS AND RESULTS: 180 participants with IGT receive a blinded, randomized supplementation with insoluble cereal fibre or placebo for 2 years. Once a year, all subjects undergo fasting blood sampling, oral glucose tolerance test, and anthropometric measurements. A subgroup (n=47) also received magnetic resonance imaging and spectroscopy for quantification of adipose tissue distribution and liver fat content. We compared MR, metabolic and inflammatory outcomes between fibre and placebo group metabolism and inflammation. Visceral and non-visceral fat, fasting glucose, HbA1c, fasting insulin, insulin resistance, and uric acid decrease only in the fibre group, mirroring effects of the entire cohort. However, after adjustment for weight loss, there are no significant between-group differences. There is a statistical trend for fibre-driven liver fat reduction in subjects with confirmed non-alcoholic fatty liver disease (NAFLD; n = 19). CONCLUSIONS: Data and evidence on beneficial effects of insoluble cereal fibre on visceral and hepatic fatstorage is limited, but warrants further research. Targeted trials are required.


Subject(s)
Body Fat Distribution , Dietary Fiber/pharmacology , Edible Grain/chemistry , Non-alcoholic Fatty Liver Disease/diet therapy , Aged , Blood Glucose/analysis , Body Weight , Dietary Supplements , Female , Glucose Intolerance , Glycated Hemoglobin/analysis , Humans , Male , Middle Aged , Placebos , Solubility
9.
Autophagy ; 17(11): 3424-3443, 2021 11.
Article in English | MEDLINE | ID: mdl-33461384

ABSTRACT

Increasing evidence suggests that induction of lethal macroautophagy/autophagy carries potential significance for the treatment of glioblastoma (GBM). In continuation of previous work, we demonstrate that pimozide and loperamide trigger an ATG5- and ATG7 (autophagy related 5 and 7)-dependent type of cell death that is significantly reduced with cathepsin inhibitors and the lipid reactive oxygen species (ROS) scavenger α-tocopherol in MZ-54 GBM cells. Global proteomic analysis after treatment with both drugs also revealed an increase of proteins related to lipid and cholesterol metabolic processes. These changes were accompanied by a massive accumulation of cholesterol and other lipids in the lysosomal compartment, indicative of impaired lipid transport/degradation. In line with these observations, pimozide and loperamide treatment were associated with a pronounced increase of bioactive sphingolipids including ceramides, glucosylceramides and sphingoid bases measured by targeted lipidomic analysis. Furthermore, pimozide and loperamide inhibited the activity of SMPD1/ASM (sphingomyelin phosphodiesterase 1) and promoted induction of lysosomal membrane permeabilization (LMP), as well as release of CTSB (cathepsin B) into the cytosol in MZ-54 wild-type (WT) cells. Whereas LMP and cell death were significantly attenuated in ATG5 and ATG7 knockout (KO) cells, both events were enhanced by depletion of the lysophagy receptor VCP (valosin containing protein), supporting a pro-survival function of lysophagy under these conditions. Collectively, our data suggest that pimozide and loperamide-driven autophagy and lipotoxicity synergize to induce LMP and cell death. The results also support the notion that simultaneous overactivation of autophagy and induction of LMP represents a promising approach for the treatment of GBM.Abbreviations: ACD: autophagic cell death; AKT1: AKT serine/threonine kinase 1; ATG5: autophagy related 5; ATG7: autophagy related 7; ATG14: autophagy related 14; CERS1: ceramide synthase 1; CTSB: cathepsin B; CYBB/NOX2: cytochrome b-245 beta chain; ER: endoplasmatic reticulum; FBS: fetal bovine serum; GBM: glioblastoma; GO: gene ontology; HTR7/5-HT7: 5-hydroxytryptamine receptor 7; KD: knockdown; KO: knockout; LAMP1: lysosomal associated membrane protein 1; LAP: LC3-associated phagocytosis; LMP: lysosomal membrane permeabilization; MAP1LC3B: microtubule associated protein 1 light chain 3 beta; MTOR: mechanistic target of rapamycin kinase; RB1CC1: RB1 inducible coiled-coil 1; ROS: reactive oxygen species; RPS6: ribosomal protein S6; SMPD1/ASM: sphingomyelin phosphodiesterase 1; VCP/p97: valosin containing protein; WT: wild-type.


Subject(s)
Autophagy/drug effects , Autophagy/physiology , Brain Neoplasms/drug therapy , Brain Neoplasms/pathology , Glioblastoma/drug therapy , Glioblastoma/pathology , Loperamide/pharmacology , Pimozide/pharmacology , Autophagy-Related Protein 5/antagonists & inhibitors , Autophagy-Related Protein 5/genetics , Autophagy-Related Protein 5/metabolism , Autophagy-Related Protein 7/antagonists & inhibitors , Autophagy-Related Protein 7/genetics , Autophagy-Related Protein 7/metabolism , Brain Neoplasms/metabolism , Cathepsins/metabolism , Cell Death/drug effects , Cell Death/physiology , Cell Line, Tumor , Ceramides/metabolism , Gene Knockout Techniques , Glioblastoma/metabolism , Humans , Lipid Metabolism/drug effects , Lysosomes/drug effects , Lysosomes/metabolism , Permeability/drug effects , Proteome/metabolism , Sphingomyelin Phosphodiesterase/antagonists & inhibitors , Sphingomyelin Phosphodiesterase/metabolism
10.
Autophagy ; 17(9): 2432-2448, 2021 09.
Article in English | MEDLINE | ID: mdl-33111629

ABSTRACT

Selective degradation of the endoplasmic reticulum (ER; reticulophagy) is a type of autophagy involved in the removal of ER fragments. So far, amino acid starvation as well as ER stress have been described as inducers of reticulophagy, which in turn restores cellular energy levels and ER homeostasis. Here, we explored the autophagy-inducing mechanisms that underlie the autophagic cell death (ACD)-triggering compound loperamide (LOP) in glioblastoma cells. Interestingly, LOP triggers upregulation of the transcription factor ATF4, which is accompanied by the induction of additional ER stress markers. Notably, knockout of ATF4 significantly attenuated LOP-induced autophagy and ACD. Functionally, LOP also specifically induces the engulfment of large ER fragments within autophagosomes and lysosomes as determined by electron and fluorescence microscopy. LOP-induced reticulophagy and cell death are predominantly mediated through the reticulophagy receptor RETREG1/FAM134B and, to a lesser extent, TEX264, confirming that reticulophagy receptors can promote ACD. Strikingly, apart from triggering LOP-induced autophagy and ACD, ATF4 is also required for LOP-induced reticulophagy. These observations highlight a key role for ATF4, RETREG1 and TEX264 in response to LOP-induced ER stress, reticulophagy and ACD, and establish a novel mechanistic link between ER stress and reticulophagy, with possible implications for additional models of drug-induced ER stress.Abbreviations: ACD: autophagic cell death; ATF6: activating transcription factor 6; ATL3: atlastin 3; BafA1: bafilomycin A1; CCPG1: cell cycle progression gene 1; co-IP: co-immunoprecipitation; DDIT3/CHOP: DNA damage inducible transcript 3; ER: endoplasmic reticulum; EIF2A/eIF2α: eukaryotic translation initiation factor 2A; EIF2AK3/PERK: eukaryotic translation initiation factor 2 alpha kinase 3; ERN1/IRE1α: endoplasmic reticulum to nucleus signaling 1; GABARAP: GABA type A receptor-associated protein; GBM: glioblastoma multiforme; HSPA5/BiP: heat shock protein family (Hsp70) member 5; LOP: loperamide; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; RETREG1/FAM134B: reticulophagy regulator 1; RTN3L: reticulon 3 long; SEC62: SEC62 homolog, protein translocation factor; TEX264: testis-expressed 264, reticulophagy receptor; UPR: unfolded protein response.


Subject(s)
Activating Transcription Factor 4 , Autophagy , Endoplasmic Reticulum Stress , Glioblastoma , Activating Transcription Factor 4/metabolism , Autophagy/physiology , Endoribonucleases/metabolism , Glioblastoma/pathology , Humans , Protein Serine-Threonine Kinases
11.
BMC Oral Health ; 20(1): 148, 2020 05 19.
Article in English | MEDLINE | ID: mdl-32429904

ABSTRACT

BACKGROUND: Periodontitis is a chronic inflammation of the tooth supporting structures that finally can lead to tooth loss. As chronic periodontitis is associated with systemic diseases multiple approaches have been followed to support regeneration of the destructed tissue. But very few materials are actually used in the clinic. A new and promising group of biomaterials with advantageous biomechanical properties that have the ability to support periodontal regeneration are self-assembling peptides (SAP). However, there is still a lack of 3D periodontal models that can evaluate the migration potential of such novel materials. METHODS: All experiments were performed with primary human periodontal ligament fibroblasts (HPLF). Migration capacity was assessed in a three-dimensional model of the human periodontal ligament by measuring the migration distance of viable cells on coated (Enamel Matrix Protein (EMP), P11-4, collagen I) or uncoated human dentin. Cellular metabolic activity on P11-4 hydrogels was assessed by a metabolic activity assay. Deposition of ECM molecules in a P11-4 hydrogel was visualized by immunostaining of collagen I and III and fibrillin I. RESULTS: The 3D periodontal model was feasible to show the positive effect of EMP for periodontal regeneration. Subsequently, self-assembling peptide P11-4 was used to evaluate its capacity to support regenerative processes in the 3D periodontal model. HPLF coverage of the dentin surface coated with P11-4 increased significantly over time, even though delayed compared to EMP. Cell viability increased and inclusion of ECM proteins into the biomaterial was shown. CONCLUSION: The presented results indicate that the 3D periodontal model is feasible to assess periodontal defect coverage and that P11-4 serves as an efficient supporter of regenerative processes in the periodontal ligament. CLINICAL RELEVANCE: The establishment of building-block synthetic polymers offers new opportunities for clinical application in dentistry. Self-assembling peptides represent a new generation of biomaterials as they are able to respond dynamically to the changing environment of the biological surrounding. Especially in the context of peri-implant disease prevention and treatment they enable the implementation of new concepts.


Subject(s)
Biocompatible Materials/therapeutic use , Periodontal Ligament , Periodontitis/therapy , Periodontium/physiology , Tissue Engineering/methods , Biocompatible Materials/chemistry , Fibroblasts , Humans , Regeneration
12.
Sci Rep ; 10(1): 687, 2020 01 20.
Article in English | MEDLINE | ID: mdl-31959760

ABSTRACT

Induction of autophagy can have beneficial effects in several human diseases, e.g. cancer and neurodegenerative diseases (ND). Here, we therefore evaluated the potential of two novel autophagy-inducing compounds, i.e. STF-62247 and pimozide, to stimulate autophagy as well as autophagic cell death (ACD) using mouse embryonic fibroblasts (MEFs) as a cellular model. Importantly, both STF-62247 and pimozide triggered several hallmarks of autophagy in MEFs, i.e. enhanced levels of LC3B-II protein, its accumulation at distinct cytosolic sites and increase of the autophagic flux. Intriguingly, autophagy induction by STF-62247 and pimozide resulted in cell death that was significantly reduced in ATG5- or ATG7-deficient MEFs. Consistent with ACD induction, pharmacological inhibitors of apoptosis, necroptosis or ferroptosis failed to protect MEFs from STF-62247- or pimozide-triggered cell death. Interestingly, at subtoxic concentrations, pimozide stimulated fragmentation of the mitochondrial network, degradation of mitochondrial proteins (i.e. mitofusin-2 and cytochrome c oxidase IV (COXIV)) as well as a decrease of the mitochondrial mass, indicative of autophagic degradation of mitochondria by pimozide. In conclusion, this study provides novel insights into the induction of selective autophagy as well as ACD by STF-62247 and pimozide in MEFs.


Subject(s)
Autophagy-Related Protein 5/genetics , Autophagy-Related Protein 7/genetics , Fibroblasts/cytology , Pimozide/adverse effects , Pyridines/adverse effects , Thiazoles/adverse effects , Animals , Autophagic Cell Death , Autophagy , Autophagy-Related Protein 5/metabolism , Autophagy-Related Protein 7/metabolism , Cell Line , Fibroblasts/metabolism , Gene Knockout Techniques , Mice , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Models, Biological , Proteolysis
13.
Nutrients ; 11(11)2019 Nov 11.
Article in English | MEDLINE | ID: mdl-31717901

ABSTRACT

Obesity does not modulate the glycometabolic benefit of insoluble cereal fibre in subjects with prediabetes-a stratified post hoc analysis of the Optimal Fibre Trial (OptiFiT). BACKGROUND: OptiFiT demonstrated the beneficial effect of insoluble oat fibres on dysglycemia in prediabetes. Recent analyses of OptiFiT and other randomised controlled trials (RCTs) indicated that this effect might be specific for the subgroup of patients with impaired fasting glucose (IFG). As subjects with IFG are more often obese, there is a need to clarify if the effect modulation is actually driven by glycemic state or body mass index (BMI). AIM: We conducted a stratified post hoc analysis of OptiFiT based on the presence or absence of obesity. METHODS: 180 Caucasian participants with impaired glucose tolerance (IGT) were randomised in a double-blinded fashion to either twice-a-day fibre or placebo supplementation for 2 years (n = 89 and 91, respectively). Once a year, they underwent fasting blood sampling, an oral glucose tolerance test (oGTT) and full anthropometry. At baseline, out of 136 subjects who completed the first year of intervention, 87 (62%) were classified as OBESE (BMI >30) and 49 subjects were NONOBESE. We performed a stratified per-protocol analysis of the primary glycemic and secondary metabolic effects attributable to dietary fibre supplementation after 1 year of intervention. RESULTS: Neither the NONOBESE nor the OBESE subgroup showed significant differences between the respective fibre and placebo groups in metabolic, anthropometric or inflammatory outcomes. None of the four subgroups showed a significant improvement in either fasting glucose or glycated haemoglobin (HbA1c) after 1 year of intervention and only OBESE fibre subjects improved 2 h glucose. Within the NONOBESE stratum, there were no significant differences in the change of primary or secondary metabolic parameters between the fibre and placebo arms. We found a significant interaction effect for leukocyte count (time × supplement × obesity status). Within the OBESE stratum, leukocyte count and gamma-glutamyl transferase (GGT) levels decreased more in the fibre group compared with placebo (adjusted for change in body weight). Comparison of both fibre groups revealed that OBESE subjects had a significantly stronger benefit with respect to leukocyte count and fasting C-peptide levels than NONOBESE participants. Only the effect on leukocyte count survived correction for multiple comparisons. In contrast, under placebo conditions, NONOBESE subjects managed to decrease their body fat content significantly more than OBESE ones. Intention-to-treat (ITT) analysis resulted in similar outcomes. CONCLUSIONS: The state of obesity does not relevantly modulate the beneficial effect of cereal fibre on major glycometabolic parameters by fibre supplementation, but leukocyte levels may be affected. Hence, BMI is not a suitable parameter to stratify this cohort with respect to diabetes risk or responsiveness to cereal fibre, but obesity needs to be accounted for when assessing anti-inflammatory effects of fibre treatments. Targeted diabetes prevention should focus on the actual metabolic state rather than on mere obesity.


Subject(s)
Dietary Fiber/metabolism , Obesity , Prediabetic State , Aged , Algorithms , Blood Glucose/metabolism , Body Size/physiology , Diabetes Mellitus, Type 2 , Diet/statistics & numerical data , Edible Grain/chemistry , Female , Humans , Insulin Resistance/physiology , Male , Middle Aged , Obesity/complications , Obesity/metabolism , Obesity/physiopathology , Prediabetic State/complications , Prediabetic State/metabolism , Prediabetic State/physiopathology
14.
Nutrients ; 11(10)2019 Oct 06.
Article in English | MEDLINE | ID: mdl-31590438

ABSTRACT

BACKGROUND: High intake of cereal fibre is associated with reduced risk for type 2 diabetes and long-term complications. Within the first long-term randomized controlled trial specifically targeting cereal fibre, the Optimal Fibre Trial (OptiFiT), intake of insoluble oat fibre was shown to significantly reduce glycaemia. Previous studies suggested that this effect might be limited to subjects with impaired fasting glucose (IFG). AIM: We stratified the OptiFiT cohort for normal and impaired fasting glucose (NFG, IFG) and conducted a secondary analysis comparing the effects of fibre supplementation between these subgroups. METHODS: 180 Caucasian participants with impaired glucose tolerance (IGT) were randomized to twice-a-day fibre or placebo supplementation for 2 years (n = 89 and 91, respectively), while assuring double-blinded intervention. Fasting blood sampling, oral glucose tolerance test and full anthropometry were assessed annually. At baseline, out of 136 subjects completing the first year of intervention, 72 (54 %) showed IFG and IGT, while 64 subjects had IGT only (labelled "NFG"). Based on these two groups, we performed a stratified per-protocol analysis of glycometabolic and secondary effects during the first year of intervention. RESULTS: The NFG group did not show significant differences between fibre and placebo group concerning anthropometric, glycometabolic, or other biochemical parameters. Within the IFG stratum, 2-h glucose, HbA1c, and gamma-glutamyl transferase levels decreased more in the fibre group, with a significant supplement x IFG interaction effect for HbA1c. Compared to NFG subjects, IFG subjects had larger benefits from fibre supplementation with respect to fasting glucose levels. Results were robust against adjustment for weight change and sex. An ITT analysis did not reveal any differences from the per-protocol analysis. CONCLUSIONS: Although stratification resulted in relatively small subgroups, we were able to pinpoint our previous findings from the entire cohort to the IFG subgroup. Cereal fibre can beneficially affect glycemic metabolism, with most pronounced or even isolated effectiveness in subjects with impaired fasting glucose.


Subject(s)
Avena , Blood Glucose/metabolism , Dietary Fiber/administration & dosage , Edible Grain , Energy Metabolism , Fasting/blood , Glucose Intolerance/diet therapy , Aged , Biomarkers/blood , Dietary Fiber/adverse effects , Double-Blind Method , Female , Germany , Glucose Intolerance/blood , Glucose Intolerance/diagnosis , Glycated Hemoglobin/metabolism , Humans , Male , Middle Aged , Postprandial Period , Solubility , Time Factors , Treatment Outcome
15.
Cell Death Dis ; 9(10): 994, 2018 09 24.
Article in English | MEDLINE | ID: mdl-30250198

ABSTRACT

Autophagy is a well-described degradation mechanism that promotes cell survival upon nutrient starvation and other forms of cellular stresses. In addition, there is growing evidence showing that autophagy can exert a lethal function via autophagic cell death (ACD). As ACD has been implicated in apoptosis-resistant glioblastoma (GBM), there is a high medical need for identifying novel ACD-inducing drugs. Therefore, we screened a library containing 70 autophagy-inducing compounds to induce ATG5-dependent cell death in human MZ-54 GBM cells. Here, we identified three compounds, i.e. loperamide, pimozide, and STF-62247 that significantly induce cell death in several GBM cell lines compared to CRISPR/Cas9-generated ATG5- or ATG7-deficient cells, pointing to a death-promoting role of autophagy. Further cell death analyses conducted using pharmacological inhibitors revealed that apoptosis, ferroptosis, and necroptosis only play minor roles in loperamide-, pimozide- or STF-62247-induced cell death. Intriguingly, these three compounds induce massive lipidation of the autophagy marker protein LC3B as well as the formation of LC3B puncta, which are characteristic of autophagy. Furthermore, loperamide, pimozide, and STF-62247 enhance the autophagic flux in parental MZ-54 cells, but not in ATG5 or ATG7 knockout (KO) MZ-54 cells. In addition, loperamide- and pimozide-treated cells display a massive formation of autophagosomes and autolysosomes at the ultrastructural level. Finally, stimulation of autophagy by all three compounds is accompanied by dephosphorylation of mammalian target of rapamycin complex 1 (mTORC1), a well-known negative regulator of autophagy. In summary, our results indicate that loperamide, pimozide, and STF-62247 induce ATG5- and ATG7-dependent cell death in GBM cells, which is preceded by a massive induction of autophagy. These findings emphasize the lethal function and potential clinical relevance of hyperactivated autophagy in GBM.


Subject(s)
Apoptosis/drug effects , Autophagy/drug effects , Brain Neoplasms/metabolism , Glioblastoma/metabolism , Loperamide/pharmacology , Pimozide/pharmacology , Pyridines/pharmacology , Thiazoles/pharmacology , Autophagosomes/metabolism , Brain Neoplasms/pathology , Brain Neoplasms/ultrastructure , Cell Line, Tumor , Endosomes/metabolism , Glioblastoma/pathology , Glioblastoma/ultrastructure , HT29 Cells , Humans , Lysosomes/metabolism , Mechanistic Target of Rapamycin Complex 1/metabolism , Microscopy, Electron , Microtubule-Associated Proteins/metabolism , Phosphorylation , Reactive Oxygen Species/metabolism , Ribosomal Protein S6 Kinases/metabolism
16.
Autophagy ; 14(10): 1693-1709, 2018.
Article in English | MEDLINE | ID: mdl-29938581

ABSTRACT

In most cases, macroautophagy/autophagy serves to alleviate cellular stress and acts in a pro-survival manner. However, the effects of autophagy are highly contextual, and autophagic cell death (ACD) is emerging as an alternative paradigm of (stress- and drug-induced) cell demise. AT 101 ([-]-gossypol), a natural compound from cotton seeds, induces ACD in glioma cells as confirmed here by CRISPR/Cas9 knockout of ATG5 that partially, but significantly rescued cell survival following AT 101 treatment. Global proteomic analysis of AT 101-treated U87MG and U343 glioma cells revealed a robust decrease in mitochondrial protein clusters, whereas HMOX1 (heme oxygenase 1) was strongly upregulated. AT 101 rapidly triggered mitochondrial membrane depolarization, engulfment of mitochondria within autophagosomes and a significant reduction of mitochondrial mass and proteins that did not depend on the presence of BAX and BAK1. Conversely, AT 101-induced reduction of mitochondrial mass could be reversed by inhibiting autophagy with wortmannin, bafilomycin A1 and chloroquine. Silencing of HMOX1 and the mitophagy receptors BNIP3 (BCL2 interacting protein 3) and BNIP3L (BCL2 interacting protein 3 like) significantly attenuated AT 101-dependent mitophagy and cell death. Collectively, these data suggest that early mitochondrial dysfunction and HMOX1 overactivation synergize to trigger lethal mitophagy, which contributes to the cell killing effects of AT 101 in glioma cells. ABBREVIATIONS: ACD, autophagic cell death; ACN, acetonitrile; AT 101, (-)-gossypol; BAF, bafilomycin A1; BAK1, BCL2-antagonist/killer 1; BAX, BCL2-associated X protein; BH3, BCL2 homology region 3; BNIP3, BCL2 interacting protein 3; BNIP3L, BCL2 interacting protein 3 like; BP, Biological Process; CCCP, carbonyl cyanide m-chlorophenyl hydrazone; CC, Cellular Component; Con, control; CQ, chloroquine; CRISPR, clustered regularly interspaced short palindromic repeats; DMEM, Dulbecco's Modified Eagle Medium; DTT, 1,4-dithiothreitol; EM, electron microscopy; ER, endoplasmatic reticulum; FACS, fluorescence-activated cell sorting; FBS, fetal bovine serum; FCCP, carbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone; GO, Gene Ontology; HAcO, acetic acid; HMOX1, heme oxygenase 1; DKO, double knockout; LC-MS/MS, liquid chromatography coupled to tandem mass spectrometry; LPL, lipoprotein lipase, MEFs, mouse embryonic fibroblasts; mPTP, mitochondrial permeability transition pore; MTG, MitoTracker Green FM; mt-mKeima, mito-mKeima; MT-ND1, mitochondrially encoded NADH:ubiquinone oxidoreductase core subunit 1; PBS, phosphate-buffered saline; PE, phosphatidylethanolamine; PI, propidium iodide; PRKN, parkin RBR E3 ubiquitin protein ligase; SDS, sodium dodecyl sulfate; SQSTM1/p62, sequestome 1; STS, staurosporine; sgRNA, single guide RNA; SILAC, stable isotope labeling with amino acids in cell culture; TFA, trifluoroacetic acid, TMRM, tetramethylrhodamine methyl ester perchlorate; WM, wortmannin; WT, wild-type.


Subject(s)
Glioma/pathology , Gossypol/analogs & derivatives , Heme Oxygenase-1/metabolism , Mitochondria/metabolism , Mitophagy/drug effects , Autophagy/drug effects , Autophagy-Related Protein 5/metabolism , Cell Line, Tumor , Glioma/enzymology , Glioma/ultrastructure , Gossypol/pharmacology , Humans , Membrane Potential, Mitochondrial/drug effects , Mitochondria/drug effects , Mitochondrial Proteins/metabolism , Neoplasm Proteins/metabolism , Proteomics
17.
R Soc Open Sci ; 5(3): 171562, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29657766

ABSTRACT

Self-assembling peptide hydrogels can be modified regarding their biodegradability, their chemical and mechanical properties and their nanofibrillar structure. Thus, self-assembling peptide hydrogels might be suitable scaffolds for regenerative therapies and tissue engineering. Owing to the use of various peptide concentrations and buffer compositions, the self-assembling peptide hydrogels might be influenced regarding their mechanical characteristics. Therefore, the mechanical properties and stability of a set of self-assembling peptide hydrogels, consisting of 11 amino acids, made from four beta sheet self-assembling peptides in various peptide concentrations and buffer compositions were studied. The formed self-assembling peptide hydrogels exhibited stiffnesses ranging from 0.6 to 205 kPa. The hydrogel stiffness was mostly affected by peptide sequence followed by peptide concentration and buffer composition. All self-assembling peptide hydrogels examined provided a nanofibrillar network formation. A maximum self-assembling peptide hydrogel dissolution of 20% was observed for different buffer solutions after 7 days. The stability regarding enzymatic and bacterial digestion showed less degradation in comparison to the self-assembling peptide hydrogel dissolution rate in buffer. The tested set of self-assembling peptide hydrogels were able to form stable scaffolds and provided a broad spectrum of tissue-specific stiffnesses that are suitable for a regenerative therapy.

18.
Mech Ageing Dev ; 170: 45-58, 2018 03.
Article in English | MEDLINE | ID: mdl-28684269

ABSTRACT

Gossypol, a natural polyphenolic compound from cotton seeds, is known to trigger different forms of cell death in various types of cancer. Gossypol acts as a Bcl-2 inhibitor that induces apoptosis in apoptosis-competent cells. In apoptosis-resistant cancers such as glioblastoma, it triggers a non-apoptotic type of cell death associated with increased oxidative stress, mitochondrial depolarisation and fragmentation. In order to investigate the impact of gossypol on mitochondrial function, the mitochondrial permeability transition pore and on oxidative stress in more detail, we used the aging model Podospora anserina that lacks endogenous Bcl-2 proteins. We found that treatment with gossypol selectively increases hydrogen peroxide levels and impairs mitochondrial respiration in P. anserina, apoptosis-deficient Bax/Bak double knockout mouse embryonal fibroblasts and glioblastoma cells. Significantly, we provide evidence that CYPD-mediated opening of the mPTP is required for gossypol-induced mitochondrial dysfunction, autophagy and cell death during organismic aging of P. anserina and in glioblastoma cells. Overall, these data provide new insights into the role of the mPTP and autophagy in the antitumor effects of gossypol, a natural compound that is clinically developed for the treatment of cancer.


Subject(s)
Autophagy/drug effects , Glioblastoma/metabolism , Gossypol/pharmacology , Mitochondria/metabolism , Mitochondrial Membrane Transport Proteins/metabolism , Animals , Cell Line , Fibroblasts/metabolism , Fibroblasts/pathology , Glioblastoma/drug therapy , Glioblastoma/pathology , Mice , Mice, Knockout , Mitochondria/pathology , Mitochondrial Permeability Transition Pore , Podospora/metabolism , Proto-Oncogene Proteins c-bcl-2/metabolism , bcl-2 Homologous Antagonist-Killer Protein/metabolism , bcl-2-Associated X Protein/metabolism
19.
Genetics ; 198(4): 1717-34, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25271305

ABSTRACT

Multiparental designs combined with dense genotyping of parents have been proposed as a way to increase the diversity and resolution of quantitative trait loci (QTL) mapping studies, using methods combining linkage disequilibrium information with linkage analysis (LDLA). Two new nested association mapping designs adapted to European conditions were derived from the complementary dent and flint heterotic groups of maize (Zea mays L.). Ten biparental dent families (N = 841) and 11 biparental flint families (N = 811) were genotyped with 56,110 single nucleotide polymorphism markers and evaluated as test crosses with the central line of the reciprocal design for biomass yield, plant height, and precocity. Alleles at candidate QTL were defined as (i) parental alleles, (ii) haplotypic identity by descent, and (iii) single-marker groupings. Between five and 16 QTL were detected depending on the model, trait, and genetic group considered. In the flint design, a major QTL (R(2) = 27%) with pleiotropic effects was detected on chromosome 10, whereas other QTL displayed milder effects (R(2) < 10%). On average, the LDLA models detected more QTL but generally explained lower percentages of variance, consistent with the fact that most QTL display complex allelic series. Only 15% of the QTL were common to the two designs. A joint analysis of the two designs detected between 15 and 21 QTL for the five traits. Of these, between 27 for silking date and 41% for tasseling date were significant in both groups. Favorable allelic effects detected in both groups open perspectives for improving biomass production.


Subject(s)
Crosses, Genetic , Genetic Linkage , Linkage Disequilibrium , Quantitative Trait Loci , Zea mays/genetics , Alleles , Chromosomes, Plant , Cluster Analysis , Evolution, Molecular , Genetics, Population , Genome, Plant , Hybrid Vigor , Hybridization, Genetic , Phenotype , Polymorphism, Single Nucleotide , Quantitative Trait, Heritable
20.
Genetics ; 198(1): 3-16, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25236445

ABSTRACT

The efficiency of marker-assisted prediction of phenotypes has been studied intensively for different types of plant breeding populations. However, one remaining question is how to incorporate and counterbalance information from biparental and multiparental populations into model training for genome-wide prediction. To address this question, we evaluated testcross performance of 1652 doubled-haploid maize (Zea mays L.) lines that were genotyped with 56,110 single nucleotide polymorphism markers and phenotyped for five agronomic traits in four to six European environments. The lines are arranged in two diverse half-sib panels representing two major European heterotic germplasm pools. The data set contains 10 related biparental dent families and 11 related biparental flint families generated from crosses of maize lines important for European maize breeding. With this new data set we analyzed genome-based best linear unbiased prediction in different validation schemes and compositions of estimation and test sets. Further, we theoretically and empirically investigated marker linkage phases across multiparental populations. In general, predictive abilities similar to or higher than those within biparental families could be achieved by combining several half-sib families in the estimation set. For the majority of families, 375 half-sib lines in the estimation set were sufficient to reach the same predictive performance of biomass yield as an estimation set of 50 full-sib lines. In contrast, prediction across heterotic pools was not possible for most cases. Our findings are important for experimental design in genome-based prediction as they provide guidelines for the genetic structure and required sample size of data sets used for model training.


Subject(s)
Genome, Plant , Models, Genetic , Zea mays/genetics , Hybridization, Genetic , Polymorphism, Single Nucleotide , Quantitative Trait Loci
SELECTION OF CITATIONS
SEARCH DETAIL
...