Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Epigenetics ; 18(1): 2144574, 2023 Dec.
Article in English | MEDLINE | ID: mdl-36373380

ABSTRACT

Until recently, studying the murine methylome was restricted to sequencing-based methods. In this study we compared the global DNA methylation levels of hairless mouse epidermis using the recently released Infinium Mouse Methylation BeadChip from Illumina and whole genome bisulphite sequencing (WGBS). We also studied the effect of sample storage conditions by using fresh and fresh-frozen epidermis. The DNA methylation levels of 123,851 CpG sites covered by both the BeadChip and WGBS were compared. DNA methylation levels obtained with WGBS and the BeadChip were strongly correlated (Pearson correlation r = 0.984). We applied a threshold of 15 reads for the WGBS methylation analysis. Even at a threshold of 10 reads, we observed no substantial difference in DNA methylation levels compared with that obtained with the BeadChip. The DNA methylation levels from the fresh and the fresh-frozen samples were strongly correlated when analysed with both the BeadChip (r = 0.999) and WGBS (r = 0.994). We conclude that the two methods of analysis generally work equally well for studies of DNA methylation of mouse epidermis and find that fresh and fresh-frozen epidermis can generally be used equally well. The choice of method will depend on the specific study's aims and the available resources in the laboratory.


Subject(s)
DNA Methylation , Genome, Human , Humans , Mice , Animals , CpG Islands , Whole Genome Sequencing/methods , Sulfites , Sequence Analysis, DNA/methods
2.
Forensic Sci Int Genet ; 56: 102620, 2022 01.
Article in English | MEDLINE | ID: mdl-34735941

ABSTRACT

Prediction of eye and hair colour from DNA can be an important investigative tool in forensic cases if conventional DNA profiling fails to match DNA from any known suspects or cannot obtain a hit in a DNA database. The HIrisPlex model for simultaneous eye and hair colour predictions was developed for forensic usage. To genotype a DNA sample, massively parallel sequencing (MPS) has brought new possibilities to the analysis of forensic DNA samples. As part of an in-house validation, this study presents the genotyping and predictive performance of the HIrisPlex SNPs in a Norwegian study population, using Verogen's ForenSeq™ DNA Signature Prep Kit on the MiSeq FGx system and the HIrisPlex webtool. DNA-profiles were successfully typed with DNA input down to 125 pg. In samples with DNA input < 125 pg, false homozygotes were observed with as many as 92 reads. Prediction accuracies in terms of AUC were high for red (0.97) and black (0.93) hair colours, as well as blue (0.85) and brown (0.94) eye colours. The AUCs for blond (0.72) and brown (0.70) hair colour were considerably lower. None of the individuals was predicted to have intermediate eye colour. Therefore, the error rates of the overall eye colour predictions were 37% with no predictive probability threshold (pmax) and 26% with a probability threshold of 0.7. We also observed that more than half of the incorrect predictions were for individuals carrying the rs12913832 GG genotype. For hair colour, 65% of the individuals were correctly predicted when using the highest probability category approach. The main error was observed for individuals with brown hair colour that were predicted to have blond hair. Utilising the prediction guide approach increased the correct predictions to 75%. Assessment of phenotype-genotype associations of eye colours using a quantitative eye colour score (PIE-score), revealed that rs12913832 AA individuals of Norwegian descent had statistically significantly higher PIE-score (less brown eye colour) than individuals of non-northern European descent. To our knowledge, this has not been reported in other studies. Our study suggests that careful assessment of the target population prior to the implementation of forensic DNA phenotyping to case work is beneficial.


Subject(s)
Eye Color , Hair Color , DNA/genetics , DNA Fingerprinting , Eye Color/genetics , Genotype , Hair Color/genetics , Humans , Norway , Polymorphism, Single Nucleotide
3.
Genes (Basel) ; 12(6)2021 05 27.
Article in English | MEDLINE | ID: mdl-34071952

ABSTRACT

Description of a perpetrator's eye colour can be an important investigative lead in a forensic case with no apparent suspects. Herein, we present 11 SNPs (Eye Colour 11-EC11) that are important for eye colour prediction and eye colour prediction models for a two-category reporting system (blue and brown) and a three-category system (blue, intermediate, and brown). The EC11 SNPs were carefully selected from 44 pigmentary variants in seven genes previously found to be associated with eye colours in 757 Europeans (Danes, Swedes, and Italians). Mathematical models using three different reporting systems: a quantitative system (PIE-score), a two-category system (blue and brown), and a three-category system (blue, intermediate, brown) were used to rank the variants. SNPs with a sufficient mean variable importance (above 0.3%) were selected for EC11. Eye colour prediction models using the EC11 SNPs were developed using leave-one-out cross-validation (LOOCV) in an independent data set of 523 Norwegian individuals. Performance of the EC11 models for the two- and three-category system was compared with models based on the IrisPlex SNPs and the most important eye colour locus, rs12913832. We also compared model performances with the IrisPlex online tool (IrisPlex Web). The EC11 eye colour prediction models performed slightly better than the IrisPlex and rs12913832 models in all reporting systems and better than the IrisPlex Web in the three-category system. Three important points to consider prior to the implementation of eye colour prediction in a forensic genetic setting are discussed: (1) the reference population, (2) the SNP set, and (3) the reporting strategy.


Subject(s)
Eye Color/genetics , Polymorphism, Single Nucleotide , Forensic Genetics/methods , Forensic Genetics/standards , Genome-Wide Association Study/methods , Genome-Wide Association Study/standards , Humans , Models, Genetic , Phenotype , Scandinavian and Nordic Countries
4.
Genes (Basel) ; 12(5)2021 05 13.
Article in English | MEDLINE | ID: mdl-34068188

ABSTRACT

Skin pigmentation is one of the most prominent and variable phenotypes in humans. We compared the alleles of 163 SNPs and indels from the Human Pigmentation (HuPi) AmpliSeq™ Custom panel, and biogeographic ancestry with the quantitative skin pigmentation levels on the upper arm, lower arm, and forehead of 299 Pakistani individuals from three subpopulations: Baloch, Pashtun, and Punjabi. The biogeographic ancestry of each individual was estimated using the Precision ID Ancestry Panel. All individuals were mainly of mixed South-Central Asian and European ancestry. However, the Baloch individuals also had an average proportion of Sub-Saharan African ancestry of approximately 10%, whereas it was <1% in the Punjabi and Pashtun individuals. The pairwise genetic distances between the Pashtun, Punjabi, and Baloch subpopulations based on the ancestry markers were statistically significantly different. Individuals from the Pashtun subpopulation had statistically significantly lower skin pigmentation than individuals from the Punjabi and Baloch subpopulations (p < 0.05). The proportions of European and Sub-Saharan African ancestry and five SNPs (rs1042602, rs10831496, rs1426654, rs16891982, and rs12913832) were statistically significantly associated with skin pigmentation at either the upper arm, lower arm or forehead in the Pakistani population after correction for multiple testing (p < 10-3). A model based on four of these SNPs (rs1426654, rs1042602, rs16891982, and rs12913832) explained 33% of the upper arm skin pigmentation. The four SNPs and the proportions of European and Sub-Saharan African ancestry explained 37% of the upper arm skin pigmentation. Our results indicate that the four likely causative SNPs, rs1426654, rs1042602, rs16891982, and rs12913832 located in SLC24A5, TYR, SLC45A2, and HERC2, respectively, are essential for skin color variation in the admixed Pakistani subpopulations.


Subject(s)
Ethnicity/genetics , Pedigree , Skin Pigmentation/genetics , Antigens, Neoplasm/genetics , Antiporters/genetics , Humans , Membrane Transport Proteins/genetics , Monophenol Monooxygenase/genetics , Pakistan , Polymorphism, Single Nucleotide , Ubiquitin-Protein Ligases/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...