Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
Add more filters










Publication year range
1.
Chempluschem ; 89(6): e202300596, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38300225

ABSTRACT

Oxidative dehydrogenation (ODH) of light alkanes to produce C2-C3 olefins is a promising alternative to conventional steam cracking. Perovskite oxides are emerging as efficient catalysts for this process due to their unique properties such as high oxygen storage capacity (OSC), reversible redox behavior, and tunability. Here, we explore AFeO3 (A=Ba, Sr) bulk perovskites for the ODH of ethane and propane under chemical looping conditions (CL-ODH). The higher OSC and oxygen mobility of SrFeO3 perovskite contributed to its higher activity but lower olefin selectivity than its Ba counterpart. However, SrFeO3 perovskite is superior in terms of cyclic stability over multiple redox cycles. Transformations of the perovskite to reduced phases including brownmillerite A2Fe2O5 were identified by X-ray diffraction (XRD) as a cause of performance degradation, which was fully reversible upon air regeneration. A pre-desorption step was utilized to selectively tune the amount of lattice oxygen as a function of temperature and dwell time to enhance olefin selectivity while suppressing CO2 formation from the deep oxidation of propane. Overall, SrFeO3 exhibits promising potential for the CL-ODH of light alkanes, and optimization through surface and structural modifications may further engineer well-regulated lattice oxygen for maximizing olefin yield.

2.
Acta Biomater ; 160: 187-197, 2023 04 01.
Article in English | MEDLINE | ID: mdl-36812956

ABSTRACT

Artificial antigen presenting cells are biomimetic particles that recapitulate the signals presented by natural antigen presenting cells in order to stimulate T cells in an antigen-specific manner using an acellular platform. We have engineered an enhanced nanoscale biodegradable artificial antigen presenting cell by modulating particle shape to achieve a nanoparticle geometry that allows for increased radius of curvature and surface area for T cell contact. The non-spherical nanoparticle artificial antigen presenting cells developed here have reduced nonspecific uptake and improved circulation time compared both to spherical nanoparticles and to traditional microparticle technologies. Additionally, the anisotropic nanoparticle artificial antigen presenting cells efficiently engage with and activate T cells, ultimately leading to a marked anti-tumor effect in a mouse melanoma model that their spherical counterparts were unable to achieve. STATEMENT OF SIGNIFICANCE: Artificial antigen presenting cells (aAPC) can activate antigen-specific CD8+ T cells but have largely been limited to microparticle-based platforms and ex vivo T cell expansion. Although more amenable to in vivo use, nanoscale aAPC have traditionally been ineffective due to limited surface area available for T cell interaction. In this work, we engineered non-spherical biodegradable nanoscale aAPC to investigate the role of particle geometry and develop a translatable platform for T cell activation. The non-spherical aAPC developed here have increased surface area and a flatter surface for T cell engagement and, therefore, can more effectively stimulate antigen-specific T cells, resulting in anti-tumor efficacy in a mouse melanoma model.


Subject(s)
Melanoma , Nanoparticles , Animals , Mice , Antigen-Presenting Cells , Lymphocyte Activation , Immunotherapy/methods , Melanoma/pathology , Antigens
3.
Nat Chem ; 14(5): 523-529, 2022 05.
Article in English | MEDLINE | ID: mdl-35115658

ABSTRACT

Intermetallic compounds offer unique opportunities for atom-by-atom manipulation of catalytic ensembles through precise stoichiometric control. The (Pd, M, Zn) γ-brass phase enables the controlled synthesis of Pd-M-Pd catalytic sites (M = Zn, Pd, Cu, Ag and Au) isolated in an inert Zn matrix. These multi-atom heteronuclear active sites are catalytically distinct from Pd single atoms and fully coordinated Pd. Here we quantify the unexpectedly large effect that active-site composition (that is, identity of the M atom in Pd-M-Pd sites) has on ethylene selectivity during acetylene semihydrogenation. Subtle stoichiometric control demonstrates that Pd-Pd-Pd sites are active for ethylene hydrogenation, whereas Pd-Zn-Pd sites show no measurable ethylene-to-ethane conversion. Agreement between experimental and density-functional-theory-predicted activities and selectivities demonstrates precise control of Pd-M-Pd active-site composition. This work demonstrates that the diversity and well-defined structure of intermetallics can be used to design active sites assembled with atomic-level precision.


Subject(s)
Alloys , Palladium , Alloys/chemistry , Catalytic Domain , Ethylenes , Hydrogenation , Palladium/chemistry
4.
Int J Pharm ; 611: 121314, 2022 Jan 05.
Article in English | MEDLINE | ID: mdl-34838950

ABSTRACT

mRNA based gene therapies hold the potential to treat multiple diseases with significant advantages over DNA based therapies, including rapid protein expression and minimized risk of mutagenesis. However, successful delivery of mRNA remains challenging, and clinical translation of mRNA therapeutics has been limited. This study investigated the use of a lipid/polymer hybrid (LPH) nanocarrier for mRNA, designed to address key delivery challenges and shuttle mRNA to targeted tissues. LPH nanocarriers were synthesized using a scalable microfluidic process with a variety of material compositions and mRNA loading strategies. Results show that a combination of permanently ionized and transiently, pH-dependent ionizable cationic lipids had a synergistic effect upon on mRNA gene translation, when compared to each lipid independently. Upon intravenous administration, particles with adsorbed mRNA outperformed particles with encapsulated mRNA for protein expression in the lungs and the spleen despite significant LPH nanoparticle localization to the liver. In contrast, encapsulated particles had higher localized expression when injected intramuscularly with protein expression detectable out to 12 days post injection. Intramuscular administration of particles with OVA mRNA resulted in robust humoral immune response with encapsulated outperforming adsorbed particles in terms of antibody titers at 28 days. These results demonstrate LPH nanocarriers have great potential as a vehicle for mRNA delivery and expression in tissues and that tissue expression and longevity can be influenced by LPH composition and route of administration.


Subject(s)
Nanoparticles , Polymers , Cations , Microfluidics , RNA, Messenger
5.
J Phys Condens Matter ; 34(28)2022 May 13.
Article in English | MEDLINE | ID: mdl-34927604

ABSTRACT

Undercoordinated, bridging O-atoms (Obr) are highly active as H-acceptors in alkane dehydrogenation on IrO2(110) surfaces but transform to HObrgroups that are inactive toward hydrocarbons. The low C-H activity and high stability of the HObrgroups cause the kinetics and product selectivity during CH4oxidation on IrO2(110) to depend sensitively on the availability of Obratoms prior to the onset of product desorption. From temperature programmed reaction spectroscopy (TPRS) and kinetic simulations, we identified two Obr-coverage regimes that distinguish the kinetics and product formation during CH4oxidation on IrO2(110). Under excess Obrconditions, when the initial Obrcoverage is greater than that needed to oxidize all the CH4to CO2and HObrgroups, complete CH4oxidation is dominant and produces CO2in a single TPRS peak between 450 and 500 K. However, under Obr-limited conditions, nearly all the initial Obratoms are deactivated by conversion to HObror abstracted after only a fraction of the initially adsorbed CH4oxidizes to CO2and CO below 500 K. Thereafter, some of the excess CHxgroups abstract H and desorb as CH4above ∼500 K while the remainder oxidize to CO2and CO at a rate that is controlled by the rate at which Obratoms are regenerated from HObrduring the formation of CH4and H2O products. We also show that chemisorbed O-atoms ('on-top O') on IrO2(110) enhance CO2production below 500 K by efficiently abstracting H from Obratoms and thereby increasing the coverage of Obratoms available to completely oxidize CHxgroups at low temperature. Our results provide new insights for understanding factors which govern the kinetics and selectivity during CH4oxidation on IrO2(110) surfaces.

6.
ACS Appl Mater Interfaces ; 13(7): 7913-7923, 2021 Feb 24.
Article in English | MEDLINE | ID: mdl-33573372

ABSTRACT

Biomimetic biomaterials are being actively explored in the context of cancer immunotherapy because of their ability to directly engage the immune system to generate antitumor responses. Unlike cellular therapies, biomaterial-based immunotherapies can be precisely engineered to exhibit defined characteristics including biodegradability, physical size, and tuned surface presentation of immunomodulatory signals. In particular, modulating the interface between the biomaterial surface and the target biological cell is key to enabling biological functions. Synthetic artificial antigen presenting cells (aAPCs) are promising as a cancer immunotherapy but are limited in clinical translation by the requirement of ex vivo cell manipulation and adoptive transfer of antigen-specific CD8+ T cells. To move toward acellular aAPC technology for in vivo use, we combine poly(lactic-co-glycolic acid) (PLGA) and cationic poly(beta-amino-ester) (PBAE) to form a biodegradable blend based on the hypothesis that therapeutic aAPCs fabricated from a cationic blend may have improved functions. PLGA/PBAE aAPCs demonstrate enhanced surface interactions with antigen-specific CD8+ T cells that increase T cell activation and expansion ex vivo, associated with significantly increased conjugation efficiency of T cell stimulatory signals to the aAPCs. Critically, these PLGA/PBAE aAPCs also expand antigen-specific cytotoxic CD8+ T cells in vivo without the need of adoptive transfer. Treatment with PLGA/PBAE aAPCs in combination with checkpoint therapy decreases tumor growth and extends survival in a B16-F10 melanoma mouse model. These results demonstrate the potential of PLGA/PBAE aAPCs as a biocompatible, directly injectable acellular therapy for cancer immunotherapy.


Subject(s)
Antigen-Presenting Cells/immunology , Artificial Cells/immunology , Immunotherapy , Melanoma/therapy , Polylactic Acid-Polyglycolic Acid Copolymer/immunology , Polymers/chemistry , Animals , Artificial Cells/chemistry , CD8-Positive T-Lymphocytes/immunology , Cations/chemistry , Cations/immunology , Melanoma/immunology , Mice , Particle Size , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , Surface Properties
7.
Acta Biomater ; 112: 136-148, 2020 08.
Article in English | MEDLINE | ID: mdl-32522714

ABSTRACT

Regulatory T cell (Treg)-based therapeutics are receiving increased attention for their potential to treat autoimmune disease and prevent transplant rejection. Adoptively transferred Tregs have shown promise in early clinical trials, but cell-based therapies are expensive and complex to implement, and "off-the-shelf" alternatives are needed. Here, we investigate the potential of artificial antigen presenting cells (aAPCs) fabricated from a blend of negatively charged biodegradable polymer (poly(lactic-co-glycolic acid), PLGA) and cationic biodegradable polymer (poly(beta-amino ester), PBAE) with incorporation of extracellular protein signals 1 and 2 and a soluble released signal 3 to convert naïve T cells to induced Foxp3+ Treg-like suppressor cells (iTregs) both in vitro and in vivo in a biomimetic manner. The addition of PBAE to the aAPC core increased the conjugation efficiency of signal proteins to the particle surface and resulted in enhanced ability to bind to naïve T cells and induce iTregs with potent suppressive function. Furthermore, PLGA/PBAE tolerogenic aAPCs (TolAPCs) supported the loading and sustained release of signal 3 cytokine TGF-ß. A single dose of TolAPCs administered intravenously to C57BL/6 J mice resulted in an increased percentage of Foxp3+ cells in the lymph nodes. Thus, PLGA/PBAE TolAPCs show potential as an "off-the-shelf" biomimetic material for tolerance induction. STATEMENT OF SIGNIFICANCE: Regulatory T cells (Tregs) are promising for basic research and translational medicine as they can induce tolerance and have the potential to treat autoimmune diseases such as type 1 diabetes and multiple sclerosis. As cell-based therapies are expensive and difficult to manufacture and implement, non-cellular methods of engineering endogenous Tregs are needed. The research reported here describes a new type of biomimetic particle, tolerogenic artificial antigen presenting cells (TolAPCs) fabricated from a blend of negatively charged biodegradable polymer, poly(lactic-co-glycolic acid), and positively charged biodegradable polymer, poly(beta-amino ester), along with key biomolecular signals: extracellularly presented protein signals 1 and 2 and a soluble released signal 3. These TolAPCs bind to naïve T cells and induce Foxp3+ Treg-like suppressor cells with potent suppressive function. In both in vitro and in vivo studies, it is shown that this non-cellular approach is useful to induce tolerance.


Subject(s)
Biomimetics , T-Lymphocytes, Regulatory , Animals , Antigen-Presenting Cells , CD8-Positive T-Lymphocytes , Mice , Mice, Inbred C57BL
8.
Sci Adv ; 6(16): eaay9035, 2020 04.
Article in English | MEDLINE | ID: mdl-32490199

ABSTRACT

The design of next-generation nanobiomaterials requires precise engineering of both physical properties of the core material and chemical properties of the material's surface to meet a biological function. A bio-inspired modular and versatile technology was developed to allow biodegradable polymeric nanoparticles to circulate through the blood for extended periods of time while also acting as a detoxification device. To mimic red blood cells, physical and chemical biomimicry are combined to enhance the biological function of nanomaterials in vitro and in vivo. The anisotropic shape and membrane coating synergize to resist cellular uptake and reduce clearance from the blood. This approach enhances the detoxification properties of nanoparticles, markedly improving survival in a mouse model of sepsis. The anisotropic membrane-coated nanoparticles have enhanced biodistribution and therapeutic efficacy. These biomimetic biodegradable nanodevices and their derivatives have promise for applications ranging from detoxification agents, to drug delivery vehicles, and to biological sensors.


Subject(s)
Biomimetic Materials , Nanoparticles , Animals , Biomimetic Materials/chemistry , Biomimetic Materials/pharmacology , Biomimetics , Cell Membrane , Erythrocyte Membrane , Mice , Nanoparticles/chemistry , Polymers/chemistry , Tissue Distribution
9.
Proc Natl Acad Sci U S A ; 117(8): 4043-4052, 2020 02 25.
Article in English | MEDLINE | ID: mdl-32034097

ABSTRACT

Cancer immunotherapy has been the subject of extensive research, but highly effective and broadly applicable methods remain elusive. Moreover, a general approach to engender endogenous patient-specific cellular therapy, without the need for a priori knowledge of tumor antigen, ex vivo cellular manipulation, or cellular manufacture, could dramatically reduce costs and broaden accessibility. Here, we describe a biotechnology based on synthetic, biodegradable nanoparticles that can genetically reprogram cancer cells and their microenvironment in situ so that the cancer cells can act as tumor-associated antigen-presenting cells (tAPCs) by inducing coexpression of a costimulatory molecule (4-1BBL) and immunostimulatory cytokine (IL-12). In B16-F10 melanoma and MC38 colorectal carcinoma mouse models, reprogramming nanoparticles in combination with checkpoint blockade significantly reduced tumor growth over time and, in some cases, cleared the tumor, leading to long-term survivors that were then resistant to the formation of new tumors upon rechallenge at a distant site. In vitro and in vivo analyses confirmed that locally delivered tAPC-reprogramming nanoparticles led to a significant cell-mediated cytotoxic immune response with systemic effects. The systemic tumor-specific and cell-mediated immunotherapy response was achieved without requiring a priori knowledge of tumor-expressed antigens and reflects the translational potential of this nanomedicine.


Subject(s)
Genetic Engineering/methods , Immunologic Factors/therapeutic use , Melanoma, Experimental/genetics , Melanoma, Experimental/therapy , Animals , Antigens, Neoplasm , Antineoplastic Agents/therapeutic use , Female , Genes, Reporter , Humans , Immunotherapy/methods , Killer Cells, Natural , Mice , Mice, Inbred C57BL , Nanomedicine , Neoplasms, Experimental/pathology , Neoplasms, Experimental/therapy , T-Lymphocytes
10.
J Am Chem Soc ; 141(29): 11641-11650, 2019 07 24.
Article in English | MEDLINE | ID: mdl-31306002

ABSTRACT

Copper-exchanged zeolites can continuously and selectively catalyze the partial oxidation of methane to methanol using only oxygen and water at low temperatures, but the genesis and nature of the active sites are currently unknown. Herein, we demonstrate that this reaction is catalyzed by a [Cu-O-Cu]2+ motif that forms via a hypothesized proton-aided diffusion of hydrated Cu ions within the cages of SSZ-13 zeolites. While various Cu configurations may be present and active for methane oxidation, a dimeric Cu motif is the primary active site for selective partial methane oxidation. Mechanistically, CH4 activation proceeds via rate-determining C-H scission to form a surface-bound C1 intermediate that can either be desorbed as methanol in the presence of H2O/H+ or completely oxidized to CO2 by gas-phase O2. High partial oxidation selectivity can be obtained with (i) high methane and water partial pressures and (ii) maximizing Cu dimer formation by using zeolites with high Al content and low Cu loadings.


Subject(s)
Copper/chemistry , Methane/chemistry , Methanol/chemistry , Zeolites/chemistry , Catalysis , Diffusion , Dimerization , Oxidation-Reduction , Spectrophotometry, Ultraviolet , Spectroscopy, Fourier Transform Infrared , Water/chemistry , X-Ray Absorption Spectroscopy
11.
Nanoscale ; 11(21): 10524-10535, 2019 May 30.
Article in English | MEDLINE | ID: mdl-31116210

ABSTRACT

Surface segregation in bimetallic nanoparticles (NPs) is critically important for their catalytic activity because the activity is largely determined by the surface composition. Little, however, is known about the atomic scale mechanisms and kinetics of surface segregation. One reason is that it is hard to resolve atomic rearrangements experimentally. It is also difficult to model surface segregation at the atomic scale because the atomic rearrangements can take place on time scales of seconds or minutes - much longer than can be modeled with molecular dynamics. Here we use the adaptive kinetic Monte Carlo (AKMC) method to model the segregation dynamics in PdAu NPs over experimentally relevant time scales, and reveal the origin of kinetic stability of the core@shell and random alloy NPs at the atomic level. Our focus on PdAu NPs is motivated by experimental work showing that both core@shell and random alloy PdAu NPs with diameters of less than 2 nm are stable, indicating that one of these structures must be metastable and kinetically trapped. Our simulations show that both the Au@Pd and the PdAu random alloy NPs are metastable and kinetically trapped below 400 K over time scales of hours. These AKMC simulations provide insight into the energy landscape of the two NP structures, and the diffusion mechanisms that lead to segregation. In the core-shell NP, surface segregation occurs primarily on the (100) facet through both a vacancy-mediated and a concerted mechanism. The system becomes kinetically trapped when all corner sites in the core of the NP are occupied by Pd atoms. Higher energy barriers are required for further segregation, so that the metastable NP has a partially alloyed shell. In contrast, surface segregation in the random alloy PdAu NP is suppressed because the random alloy NP has reduced strain as compared to the Au@Pd NP, and the segregation mechanisms in the alloy require more elastic energy for exchange of Pd and Au and between the surface and subsurface.

12.
Inorg Chem ; 58(9): 5576-5582, 2019 May 06.
Article in English | MEDLINE | ID: mdl-30951298

ABSTRACT

We have used discrete polyoxopalladates(II) (POPs) of the MPd12X8 nanocube- and Pd15X10 nanostar-types (M = central metal ion, X = capping group) as molecular precursors (diameter ca. 1 nm) for the formation of supported (SBA-15) metallic nanoparticles. These materials proved to be highly active in the hydrogenation of o-xylene. The characterization of such hydrogenation catalysts revealed that the average size of the resulting alloy particles is quite uniform with diameters ranging from 1 to 3 nm (indicating little to no agglomeration). The central transition-metal ion M n+ (MnII, FeIII, CoII, NiII, CuII, ZnII, PdII) in the POP structure and also the nature of the capping group (AsO43-, SeO32-, PO43-, phenyl-AsO32-) influence the resulting catalytic performance.

13.
Biomater Sci ; 7(1): 14-30, 2018 Dec 18.
Article in English | MEDLINE | ID: mdl-30418444

ABSTRACT

New advances in biomaterial-based approaches to modulate the immune system are being applied to treat cancer, infectious diseases, and autoimmunity. Particulate systems are especially well-suited to deliver immunomodulatory factors to immune cells since their small size allows them to engage cell surface receptors or deliver cargo intracellularly after internalization. Biodegradable polymeric particles are a particularly versatile platform for the delivery of signals to the immune system because they can be easily surface-modified to target specific receptors and engineered to release encapsulated cargo in a precise, sustained manner. Micro- and nanoscale systems have been used to deliver a variety of therapeutic agents including monoclonal antibodies, peptides, and small molecule drugs that function to activate the immune system against cancer or infectious disease, or suppress the immune system to combat autoimmune diseases and transplant rejection. This review provides an overview of recent advances in the development of polymeric micro- and nanoparticulate systems for the presentation and delivery of immunomodulatory agents targeted to a variety of immune cell types including APCs, T cells, B cells, and NK cells.


Subject(s)
Drug Carriers/chemistry , Drug Delivery Systems , Immunologic Factors/administration & dosage , Nanoparticles/chemistry , Polymers/chemistry , Animals , Antigen-Presenting Cells/drug effects , Antigen-Presenting Cells/immunology , B-Lymphocytes/drug effects , B-Lymphocytes/immunology , Drug Delivery Systems/methods , Humans , Immunologic Factors/pharmacology , Immunologic Factors/therapeutic use , Immunomodulation/drug effects , Killer Cells, Natural/drug effects , Killer Cells, Natural/immunology , T-Lymphocytes/drug effects , T-Lymphocytes/immunology
14.
J Vis Exp ; (140)2018 10 12.
Article in English | MEDLINE | ID: mdl-30371668

ABSTRACT

Artificial antigen presenting cells (aAPC) are a promising platform for immune modulation due to their potent ability to stimulate T cells. Acellular substrates offer key advantages over cell-based aAPC, including precise control of signal presentation parameters and physical properties of the aAPC surface to modulate its interactions with T cells. aAPC constructed from anisotropic particles, particularly ellipsoidal particles, have been shown to be more effective than their spherical counterparts at stimulating T cells due to increased binding and larger surface area available for T cell contact, as well as reduced nonspecific uptake and enhanced pharmacokinetic properties. Despite increased interest in anisotropic particles, even widely accepted methods of generating anisotropic particles such as thin-film stretching can be challenging to implement and use reproducibly. To this end, we describe a protocol for the rapid, standardized fabrication of biodegradable anisotropic particle-based aAPC with tunable size, shape, and signal presentation for T cell expansion ex vivo or in vivo, along with methods to characterize their size, morphology, and surface protein content, and to assess their functionality. This approach to fabricating anisotropic aAPC is scalable and reproducible, making it ideal for generating aAPC for "off-the-shelf" immunotherapies.


Subject(s)
Antigen-Presenting Cells/immunology , CD8-Positive T-Lymphocytes/immunology , Lymphocyte Activation/immunology , Anisotropy , Humans
15.
Acta Biomater ; 72: 228-238, 2018 05.
Article in English | MEDLINE | ID: mdl-29631048

ABSTRACT

There has been growing interest in the use of particles coated with lipids for applications ranging from drug delivery, gene delivery, and diagnostic imaging to immunoengineering. To date, almost all particles with lipid coatings have been spherical despite emerging evidence that non-spherical shapes can provide important advantages including reduced non-specific elimination and increased target-specific binding. We combine control of core particle geometry with control of particle surface functionality by developing anisotropic, biodegradable ellipsoidal particles with lipid coatings. We demonstrate that these lipid coated ellipsoidal particles maintain advantageous properties of lipid polymer hybrid particles, such as the ability for modular protein conjugation to the particle surface using versatile bioorthogonal ligation reactions. In addition, they exhibit biomimetic membrane fluidity and demonstrate lateral diffusive properties characteristic of natural membrane proteins. These ellipsoidal particles simultaneously provide benefits of non-spherical particles in terms of stability and resistance to non-specific phagocytosis by macrophages as well as enhanced targeted binding. These biomaterials provide a novel and flexible platform for numerous biomedical applications. STATEMENT OF SIGNIFICANCE: The research reported here documents the ability of non-spherical polymeric particles to be coated with lipids to form anisotropic biomimetic particles. In addition, we demonstrate that these lipid-coated biodegradable polymeric particles can be conjugated to a wide variety of biological molecules in a "click-like" fashion. This is of interest due to the multiple types of cellular mimicry enabled by this biomaterial based technology. These features include mimicry of the highly anisotropic shape exhibited by cells, surface presentation of membrane bound protein mimetics, and lateral diffusivity of membrane bound substrates comparable to that of a plasma membrane. This platform is demonstrated to facilitate targeted cell binding while being resistant to non-specific cellular uptake. Such a platform could allow for investigations into how physical parameters of a particle and its surface affect the interface between biomaterials and cells, as well as provide biomimetic technology platforms for drug delivery and cellular engineering.


Subject(s)
Coated Materials, Biocompatible , Lipids , Macrophages/metabolism , Membranes, Artificial , Phagocytosis/drug effects , Proteins , Animals , Anisotropy , Coated Materials, Biocompatible/chemistry , Coated Materials, Biocompatible/pharmacokinetics , Coated Materials, Biocompatible/pharmacology , Lipids/chemistry , Lipids/pharmacokinetics , Lipids/pharmacology , Macrophages/cytology , Mice , Proteins/chemistry , Proteins/pharmacokinetics , Proteins/pharmacology , RAW 264.7 Cells
16.
ACS Appl Mater Interfaces ; 10(16): 13333-13341, 2018 Apr 25.
Article in English | MEDLINE | ID: mdl-29600843

ABSTRACT

Triggering shape-memory functionality under clinical hyperthermia temperatures could enable the control and actuation of shape-memory systems in clinical practice. For this purpose, we developed light-inducible shape-memory microparticles composed of a poly(d,l-lactic acid) (PDLLA) matrix encapsulating gold nanoparticles (Au@PDLLA hybrid microparticles). This shape-memory polymeric system for the first time demonstrates the capability of maintaining an anisotropic shape at body temperature with triggered shape-memory effect back to a spherical shape at a narrow temperature range above body temperature with a proper shape recovery speed (37 < T < 45 °C). We applied a modified film-stretching processing method with carefully controlled stretching temperature to enable shape memory and anisotropy in these micron-sized particles. Accordingly, we achieved purely entanglement-based shape-memory response without chemical cross-links in the miniaturized shape-memory system. Furthermore, these shape-memory microparticles exhibited light-induced spatiotemporal control of their shape recovery using a laser to trigger the photothermal heating of doped gold nanoparticles. This shape-memory system is composed of biocompatible components and exhibits spatiotemporal controllability of its properties, demonstrating a potential for various biomedical applications, such as tuning macrophage phagocytosis as demonstrated in this study.


Subject(s)
Polymers/chemistry , Gold , Lactic Acid , Metal Nanoparticles , Temperature
17.
Chemphyschem ; 19(4): 402-411, 2018 Feb 19.
Article in English | MEDLINE | ID: mdl-29266660

ABSTRACT

Catalytic methane oxidation using N2 O was investigated at 300 °C over Fe-ZSM-5. This reaction rapidly produces coke (retained organic species), and causes catalyst fouling. The introduction of water into the feed-stream resulted in a significant decrease in the coke selectivity and an increase in the selectivity to the desired product, methanol, from ca. 1 % up to 16 %. A detailed investigation was carried out to determine the fundamental effect of water on the reaction pathway and catalyst stability. The delplot technique was utilised to identify primary and secondary reaction products. This kinetic study suggests that observed gas phase products (CO, CO2 , CH3 OH, C2 H4 and C2 H6 ) form as primary products whilst coke is a secondary product. Dimethyl ether was not detected, however we consider that the formation of C2 products are likely to be due to an initial condensation of methanol within the pores of the zeolite and hence considered pseudo-primary products. According to a second order delplot analysis, coke is considered a secondary product and its formation correlates with CH3 OH formation. Control experiments in the absence of methane revealed that the rate of N2 O decomposition is similar to that of the full reaction mixture, indicating that the loss of active alpha-oxygen sites is the likely cause of the decrease in activity observed and water does not inhibit this process.

18.
Adv Drug Deliv Rev ; 114: 102-115, 2017 05 15.
Article in English | MEDLINE | ID: mdl-28501510

ABSTRACT

The once nascent field of immunoengineering has recently blossomed to include approaches to deliver and present biomolecules to program diverse populations of lymphocytes to fight disease. Building upon improved understanding of the molecular and physical mechanics of lymphocyte activation, varied strategies for engineering surfaces to activate and deactivate T-Cells, B-Cells and natural killer cells are in preclinical and clinical development. Surfaces have been engineered at the molecular level in terms of the presence of specific biological factors, their arrangement on a surface, and their diffusivity to elicit specific lymphocyte fates. In addition, the physical and mechanical characteristics of the surface including shape, anisotropy, and rigidity of particles for lymphocyte activation have been fine-tuned. Utilizing these strategies, acellular systems have been engineered for the expansion of T-Cells and natural killer cells to clinically relevant levels for cancer therapies as well as engineered to program B-Cells to better combat infectious diseases.


Subject(s)
Antigen Presentation , Cell Engineering , Lymphocyte Activation , Lymphocytes/immunology , Lymphocytes/metabolism , Animals , Antigens, Surface/immunology , Antigens, Surface/metabolism , B-Lymphocytes/cytology , B-Lymphocytes/immunology , Humans , Killer Cells, Natural/cytology , Killer Cells, Natural/immunology , Lymphocytes/cytology , T-Lymphocytes/cytology , T-Lymphocytes/immunology
19.
J Biomed Mater Res A ; 105(6): 1813-1825, 2017 06.
Article in English | MEDLINE | ID: mdl-28177587

ABSTRACT

Translation of biomaterial-based nanoparticle formulations to the clinic faces significant challenges including efficacy, safety, consistency and scale-up of manufacturing, and stability during long-term storage. Continuous microfluidic fabrication of polymeric nanoparticles has the potential to alleviate the challenges associated with manufacture, while offering a scalable solution for clinical level production. Poly(beta-amino esters) (PBAE)s are a class of biodegradable cationic polymers that self-assemble with anionic plasmid DNA to form polyplex nanoparticles that have been shown to be effective for transfecting cancer cells specifically in vitro and in vivo. Here, we demonstrate the use of a microfluidic device for the continuous and scalable production of PBAE/DNA nanoparticles followed by lyophilization and long term storage that results in improved in vitro efficacy in multiple cancer cell lines compared to nanoparticles produced by bulk mixing as well as in comparison to widely used commercially available transfection reagents polyethylenimine and Lipofectamine® 2000. We further characterized the nanoparticles using nanoparticle tracking analysis (NTA) to show that microfluidic mixing resulted in fewer DNA-free polymeric nanoparticles compared to those produced by bulk mixing. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 1813-1825, 2017.


Subject(s)
DNA/administration & dosage , Nanoparticles/chemistry , Plasmids/administration & dosage , Polymers/chemistry , Transfection/methods , Cell Line, Tumor , DNA/genetics , Equipment Design , Freeze Drying , Gene Transfer Techniques , Humans , Lab-On-A-Chip Devices , Plasmids/genetics
20.
Nano Lett ; 17(2): 652-659, 2017 02 08.
Article in English | MEDLINE | ID: mdl-28094959

ABSTRACT

Targeted, noninvasive neuromodulation of the brain of an otherwise awake subject could revolutionize both basic and clinical neuroscience. Toward this goal, we have developed nanoparticles that allow noninvasive uncaging of a neuromodulatory drug, in this case the small molecule anesthetic propofol, upon the application of focused ultrasound. These nanoparticles are composed of biodegradable and biocompatible constituents and are activated using sonication parameters that are readily achievable by current clinical transcranial focused ultrasound systems. These particles are potent enough that their activation can silence seizures in an acute rat seizure model. Notably, there is no evidence of brain parenchymal damage or blood-brain barrier opening with their use. Further development of these particles promises noninvasive, focal, and image-guided clinical neuromodulation along a variety of pharmacological axes.


Subject(s)
Brain/drug effects , Emulsions/chemistry , Nanoparticles/chemistry , Neurotransmitter Agents/administration & dosage , Anesthetics/administration & dosage , Anesthetics/chemistry , Animals , Blood-Brain Barrier/metabolism , Brain/metabolism , Drug Carriers , Drug Liberation , Fluorocarbons/chemistry , Magnetic Resonance Imaging , Neurotransmitter Agents/chemistry , Optical Imaging , Propofol/administration & dosage , Propofol/chemistry , Rats , Seizures/drug therapy , Tissue Distribution , Ultrasonic Waves
SELECTION OF CITATIONS
SEARCH DETAIL
...