Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Anal Chem ; 95(22): 8613-8620, 2023 06 06.
Article in English | MEDLINE | ID: mdl-37229528

ABSTRACT

We report methods that improve the quantification of digital bead assays (DBA)─such as the digital enzyme-linked immunosorbent assay (ELISA)─that have found widespread use for high sensitivity measurement of proteins in clinical research and diagnostics. In digital ELISA, proteins are captured on beads, labeled with enzymes, individual beads are interrogated for activity from one or more enzymes, and the average number of enzymes per bead (AEB) is determined based on Poisson statistics. The widespread use of digital ELISA has revealed limitations to the original approaches to quantification that can lead to inaccurate AEB. Here, we have addressed the inaccuracy in AEB due to deviations from Poisson distribution in a digital ELISA for Aß-40 by changing the AEB calculation from a fixed threshold between digital counting and average normalized intensity to a smooth, continuous combination of digital counting and intensity. We addressed issues with determining the average product fluorescence intensity from single enzymes on beads by allowing outlier, high intensity arrays to be removed from average intensities, and by permitting the use of a wider range of arrays. These approaches improved the accuracy of a digital ELISA for tau protein that was affected by aggregated detection antibodies. We increased the dynamic range of a digital ELISA for IL-17A from AEB ∼25 to ∼130 by combining long and short exposure images at the product emission wavelength to create virtual images. The methods reported will significantly improve the accuracy and robustness of DBA based on imaging─such as single molecule arrays (Simoa)─and flow detection.


Subject(s)
Antibodies , Proteins , Enzyme-Linked Immunosorbent Assay/methods
2.
J Lab Autom ; 21(4): 533-47, 2016 Aug.
Article in English | MEDLINE | ID: mdl-26077162

ABSTRACT

Disease detection at the molecular level is driving the emerging revolution of early diagnosis and treatment. A challenge facing the field is that protein biomarkers for early diagnosis can be present in very low abundance. The lower limit of detection with conventional immunoassay technology is the upper femtomolar range (10(-13) M). Digital immunoassay technology has improved detection sensitivity three logs, to the attomolar range (10(-16) M). This capability has the potential to open new advances in diagnostics and therapeutics, but such technologies have been relegated to manual procedures that are not well suited for efficient routine use. We describe a new laboratory instrument that provides full automation of single-molecule array (Simoa) technology for digital immunoassays. The instrument is capable of single-molecule sensitivity and multiplexing with short turnaround times and a throughput of 66 samples/h. Singleplex and multiplexed digital immunoassays were developed for 16 proteins of interest in cardiovascular, cancer, infectious disease, neurology, and inflammation research. The average sensitivity improvement of the Simoa immunoassays versus conventional ELISA was >1200-fold, with coefficients of variation of <10%. The potential of digital immunoassays to advance human diagnostics was illustrated in two clinical areas: traumatic brain injury and early detection of infectious disease.


Subject(s)
Automation, Laboratory/instrumentation , Automation, Laboratory/methods , Clinical Laboratory Techniques/instrumentation , Clinical Laboratory Techniques/methods , Immunoassay/instrumentation , Immunoassay/methods , Humans , Reproducibility of Results , Sensitivity and Specificity , Signal Processing, Computer-Assisted/instrumentation , Time Factors
3.
Lab Chip ; 13(15): 2902-11, 2013 Aug 07.
Article in English | MEDLINE | ID: mdl-23719780

ABSTRACT

We have developed a method that enables the multiplexed detection of proteins based on counting single molecules. Paramagnetic beads were labeled with fluorescent dyes to create optically distinct subpopulations of beads, and antibodies to specific proteins were then immobilized to individual subpopulations. Mixtures of subpopulations of beads were then incubated with a sample, and specific proteins were captured on their specific beads; these proteins were then labeled with enzymes via immunocomplex formation. The beads were suspended in enzyme substrate, loaded into arrays of femtoliter wells--or Single Molecule Arrays (Simoa)--that were integrated into a microfluidic device (the Simoa disc). The wells were then sealed with oil, and imaged fluorescently to determine: a) the location and subpopulation identity of individual beads in the femtoliter wells, and b) the presence or absence of a single enzyme associated with each bead. The images were analyzed to determine the average enzyme per bead (AEB) for each bead subpopulation that provide a quantitative parameter for determining the concentration of each protein. We used this approach to simultaneously detect TNF-α, IL-6, IL-1α, and IL-1ß in human plasma with single molecule resolution at subfemtomolar concentrations, i.e., 200- to 1000-fold more sensitive than current multiplexed immunoassays. The simultaneous, specific, and sensitive measurement of several proteins using multiplexed digital ELISA could enable more reliable diagnoses of disease.


Subject(s)
Enzyme-Linked Immunosorbent Assay/instrumentation , Microfluidic Analytical Techniques/instrumentation , Antibodies, Immobilized/chemistry , Equipment Design , Fluorescent Dyes/chemistry , Humans , Interleukin-1alpha/blood , Interleukin-1beta/blood , Interleukin-6/blood , Optical Imaging , Sensitivity and Specificity , Tumor Necrosis Factor-alpha/blood
4.
Lab Chip ; 12(5): 977-85, 2012 Mar 07.
Article in English | MEDLINE | ID: mdl-22179487

ABSTRACT

We report a method for isolating individual paramagnetic beads in arrays of femtolitre-sized wells and detecting single enzyme-labeled proteins on these beads using sequential fluid flows in microfabricated polymer array assemblies. Arrays of femtolitre-sized wells were fabricated in cyclic olefin polymer (COP) using injection moulding based on DVD manufacturing. These arrays were bonded to a complementary fluidic structure that was also moulded in COP to create an enclosed device to allow delivery of liquids to the arrays. Enzyme-associated, paramagnetic beads suspended in aqueous solutions of enzyme substrate were delivered fluidically to the array such that one bead per well was loaded by gravity. A fluorocarbon oil was then flowed into the device to remove excess beads from the surface of the array, and to seal and isolate the femtolitre-sized wells containing beads and enzyme substrate. The device was then imaged using standard fluorescence imaging to determine which wells contained single enzyme molecules. The analytical performance of this device as the detector for digital ELISA compared favourably to the standard method, i.e., glass arrays mechanically sealed against a silicone gasket; prostate specific antigen (PSA) could be detected from 0.011 pg mL(-1) up to 100 pg mL(-1). The use of an enclosed fluidic device to isolate beads in single-molecule arrays offers a multitude of advantages for low-cost manufacturing, ease of automation, and instrument development to enable applications in biomarker validation and medical diagnosis.


Subject(s)
Magnetics , Nanoparticles/chemistry , Polymers/chemistry , Cycloparaffins/chemistry , Microarray Analysis , Prostate-Specific Antigen/chemistry
5.
Anal Biochem ; 352(1): 97-109, 2006 May 01.
Article in English | MEDLINE | ID: mdl-16549054

ABSTRACT

Single molecule detection of target molecules specifically bound by paired fluorescently labeled probes has shown great potential for sensitive quantitation of biomolecules. To date, no reports have rigorously evaluated the analytical capabilities of a single molecule detection platform employing this dual-probe approach or the performance of its data analysis methodology. In this paper, we describe a rapid, automated, and sensitive multicolor single molecule detection apparatus and a novel extension of coincident event counting based on detection of fluorescent probes. The approach estimates the number of dual-labeled molecules of interest from the total number of coincident fluorescent events observed by correcting for unbound probes that randomly pass through the interrogation zone simultaneously. Event counting was evaluated on three combinations of distinct fluorescence channels and was demonstrated to outperform conventional spatial cross-correlation in generating a wider linear dynamic response to target molecules. Furthermore, this approach succeeded in detecting subpicomolar concentrations of a model RNA target to which fluorescently labeled oligonucleotide probes were hybridized in a complex background of RNA. These results illustrate that the fluorescent event counting approach described represents a general tool for rapid sensitive quantitative analysis of any sample analyte, including nucleic acids and proteins, for which pairs of specific probes can be developed.


Subject(s)
Fluorescent Dyes/chemistry , Microscopy, Confocal/methods , Molecular Probe Techniques , Oligonucleotide Probes/chemistry , Base Sequence , Microscopy, Confocal/instrumentation , Molecular Probe Techniques/instrumentation , Nucleic Acid Hybridization , RNA, Messenger/analysis , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...