Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Mater Au ; 3(5): 501-513, 2023 Sep 13.
Article in English | MEDLINE | ID: mdl-38089098

ABSTRACT

The thiospinel group of nickel cobalt sulfides (NixCo3-xS4) are promising materials for energy applications such as supercapacitors, fuel cells, and solar cells. Solution-processible nanoparticles of NixCo3-xS4 have advantages of low cost and fabrication of high-performance energy devices due to their high surface-to-volume ratio, which increases the electrochemically active surface area and shortens the ionic diffusion path. The current approaches to synthesize NixCo3-xS4 nanoparticles are often based on hydrothermal or solvothermal methods that are difficult to scale up safely and efficiently and that preclude monitoring the reaction through aliquots, making optimization of size and dispersity challenging, typically resulting in aggregated nanoparticles with polydisperse sizes. In this work, we report a scalable "heat-up" method to colloidally synthesize NixCo3-xS4 nanoparticles that are smaller than 15 nm in diameter with less than 15% in size dispersion, using two inexpensive, earth-abundant sulfur sources. Our method provides a reliable synthetic pathway to produce phase-pure, low-dispersity, gram-scale nanoparticles of ternary metal sulfides. This method enhances the current capabilities of NixCo3-xS4 nanoparticles to meet the performance demands to improve renewable energy technologies.

2.
ACS Nano ; 16(12): 20457-20469, 2022 Dec 27.
Article in English | MEDLINE | ID: mdl-36395373

ABSTRACT

Chiroptically active, hierarchically structured materials are difficult to accurately characterize due to linear anisotropic contributions (i.e., linear dichroism (LD) and linear birefringence (LB)) and parasitic ellipticities that produce artifactual circular dichroism (CD) signals, in addition to chiral analyte contributions ranging from molecular-scale clusters to micron-sized assemblies. Recently, we have shown that CdS magic-sized clusters (MSC) can self-assemble into ordered films that have a hierarchical structure spanning seven orders of length-scale. These films have a strong CD response, but the chiral origins are obfuscated by the hierarchical architecture and LDLB contributions. Here, we derive and demonstrate a method for extracting the "pure" CD signal (CD generated by structural dissymmetry) from hierarchical MSC films and identified the chiral origin. The theory behind the method is derived using Mueller matrix and Stokes vector conventions and verified experimentally before being applied to hierarchical MSC and nanoparticle films with varying macroscopic orderings. Each film's extracted "true CD" shares a bisignate profile aligned with the exciton peak, indicating the assemblies adopt a chiral arrangement and form an exciton coupled system. Interestingly, the linearly aligned MSC film possesses one of the highest g-factors (0.05) among semiconducting nanostructures reported. Additionally, we find that films with similar electronic transition dipole alignment can possess greatly different g-factors, indicating chirality change rather than anisotropy is the cause of the difference in the CD signal. The difference in g-factor is controllable via film evaporation geometry. This study provides a simple means to measure "true" CD and presents an example of experimentally understanding chiroptic interactions in hierarchical nanostructures.

SELECTION OF CITATIONS
SEARCH DETAIL
...