Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 66
Filter
1.
Int J Mol Sci ; 25(11)2024 May 21.
Article in English | MEDLINE | ID: mdl-38891780

ABSTRACT

The kinetics and mechanism of drug binding to its target are critical to pharmacological efficacy. A high throughput (HTS) screen often results in hundreds of hits, of which usually only simple IC50 values are determined during reconfirmation. However, kinetic parameters such as residence time for reversible inhibitors and the kinact/KI ratio, which is the critical measure for evaluating covalent inactivators, are early predictive measures to assess the chances of success of the hits in the clinic. Using the promising cancer target human histone deacetylase 8 as an example, we present a robust method that calculates concentration-dependent apparent rate constants for the inhibition or inactivation of HDAC8 from dose-response curves recorded after different pre-incubation times. With these data, hit compounds can be classified according to their mechanism of action, and the relevant kinetic parameters can be calculated in a highly parallel fashion. HDAC8 inhibitors with known modes of action were correctly assigned to their mechanism, and the binding mechanisms of some hits from an internal HDAC8 screening campaign were newly determined. The oxonitriles SVE04 and SVE27 were classified as fast reversible HDAC8 inhibitors with moderate time-constant IC50 values of 4.2 and 2.6 µM, respectively. The hit compound TJ-19-24 and SAH03 behave like slow two-step inactivators or reversible inhibitors, with a very low reverse isomerization rate.


Subject(s)
Histone Deacetylase Inhibitors , Histone Deacetylases , Repressor Proteins , Humans , Histone Deacetylases/metabolism , Histone Deacetylases/chemistry , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylase Inhibitors/chemistry , Kinetics , Repressor Proteins/metabolism , Repressor Proteins/antagonists & inhibitors , Repressor Proteins/chemistry , Protein Binding , High-Throughput Screening Assays/methods
2.
J Pept Sci ; : e3603, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38623824

ABSTRACT

Histone deacetylase 4 (HDAC4) contributes to gene repression by complex formation with HDAC3 and the corepressor silencing mediator for retinoid or thyroid hormone receptors (SMRT). We hypothesized that peptides derived from the class IIa specific binding site of SMRT would stabilize a specific conformation of its target protein and modulate its activity. Based on the SMRT-motif 1 (SM1) involved in the interaction of SMRT with HDAC4, we systematically developed cyclic peptides that exhibit Ki values that are 9 to 56 times lower than that of the linear SMRT peptide. The peptide macrocycles stabilize the wildtype of the catalytic domain of HDAC4 (cHDAC4) considerably better than its thermally more stable 'gain-of-function' (GOF) variant, cHDAC4-H976Y. Molecular docking and mutagenesis studies indicated that the cyclic peptides bind in a similar but not identical manner as the linear SMRT peptide to a discontinuous binding site. Ion mobility mass spectrometry showed no major changes in the protein fold upon peptide binding. Consistent with these results, preliminary hydrogen-deuterium exchange mass spectrometry measurements indicated only minor conformational changes. Taken together, the cyclic SMRT peptides most likely stabilize the apo form of cHDAC4.

3.
Protein Sci ; 33(3): e4917, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38358265

ABSTRACT

Human histone deacetylase 4 (HDAC4) is a key epigenetic regulator involved in a number of important cellular processes. This makes HDAC4 a promising target for the treatment of several cancers and neurodegenerative diseases, in particular Huntington's disease. HDAC4 is highly regulated by phosphorylation and oxidation, which determine its nuclear or cytosolic localization, and exerts its function through multiple interactions with other proteins, forming multiprotein complexes of varying composition. The catalytic domain of HDAC4 is known to interact with the SMRT/NCOR corepressor complex when the structural zinc-binding domain (sZBD) is intact and forms a closed conformation. Crystal structures of the HDAC4 catalytic domain have been reported showing an open conformation of HDAC4 when bound to certain ligands. Here, we investigated the relevance of this HDAC4 conformation under physiological conditions in solution. We show that proper zinc chelation in the sZBD is essential for enzyme function. Loss of the structural zinc ion not only leads to a massive decrease in enzyme activity, but it also has serious consequences for the overall structural integrity and stability of the protein. However, the Zn2+ free HDAC4 structure in solution is incompatible with the open conformation. In solution, the open conformation of HDAC4 was also not observed in the presence of a variety of structurally divergent ligands. This suggests that the open conformation of HDAC4 cannot be induced in solution, and therefore cannot be exploited for the development of HDAC4-specific inhibitors.


Subject(s)
Histone Deacetylases , Zinc , Humans , Catalytic Domain , Ligands , Phosphorylation , Histone Deacetylases/chemistry
4.
J Med Chem ; 67(1): 572-585, 2024 01 11.
Article in English | MEDLINE | ID: mdl-38113354

ABSTRACT

Screening of ultra-low-molecular weight ligands (MiniFrags) successfully identified viable chemical starting points for a variety of drug targets. Here we report the electrophilic analogues of MiniFrags that allow the mapping of potential binding sites for covalent inhibitors by biochemical screening and mass spectrometry. Small electrophilic heterocycles and their N-quaternized analogues were first characterized in the glutathione assay to analyze their electrophilic reactivity. Next, the library was used for systematic mapping of potential covalent binding sites available in human histone deacetylase 8 (HDAC8). The covalent labeling of HDAC8 cysteines has been proven by tandem mass spectrometry measurements, and the observations were explained by mutating HDAC8 cysteines. As a result, screening of electrophilic MiniFrags identified three potential binding sites suitable for the development of allosteric covalent HDAC8 inhibitors. One of the hit fragments was merged with a known HDAC8 inhibitor fragment using different linkers, and the linker length was optimized to result in a lead-like covalent inhibitor.


Subject(s)
Histone Deacetylase Inhibitors , Histone Deacetylases , Humans , Histone Deacetylase Inhibitors/chemistry , Histone Deacetylases/metabolism , Binding Sites , Tandem Mass Spectrometry , Ligands , Repressor Proteins/metabolism
5.
Molecules ; 28(15)2023 Jul 27.
Article in English | MEDLINE | ID: mdl-37570656

ABSTRACT

Five-membered heteroaromatic rings, in particular, have gained prominence in medicinal chemistry as they offer enhanced metabolic stability, solubility and bioavailability, crucial factors in developing effective drugs. The unique physicochemical properties and biological effects of five-membered heterocycles have positioned them as key structural motifs in numerous clinically effective drugs. Hence, the exploration of five-ring heterocycles remains an important research area in medicinal chemistry, with the aim of discovering new therapeutic agents for various diseases. This review addresses the incorporation of heteroatoms such as nitrogen, oxygen and sulfur into the aromatic ring of these heterocyclic compounds, enhancing their polarity and facilitating both aromatic stacking interactions and the formation of hydrogen bonds. Histone deacetylases are present in numerous multiprotein complexes within the epigenetic machinery and play a central role in various cellular processes. They have emerged as important targets for cancer, neurodegenerative diseases and other therapeutic indications. In histone deacetylase inhibitors (HDACi's), five-ring heterocycles perform various functions as a zinc-binding group, a linker or head group, contributing to binding activity and selective recognition. This review focuses on providing an up-to-date overview of the different five-membered heterocycles utilized in HDACi motifs, highlighting their biological properties. It summarizes relevant publications from the past decade, offering insights into the recent advancements in this field of research.


Subject(s)
Heterocyclic Compounds , Neoplasms , Humans , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylase Inhibitors/chemistry , Heterocyclic Compounds/pharmacology , Heterocyclic Compounds/chemistry , Histone Deacetylases
6.
Explor Target Antitumor Ther ; 4(3): 447-459, 2023.
Article in English | MEDLINE | ID: mdl-37455831

ABSTRACT

Aim: Human histone deacetylase 8 (KDAC8) is a well-recognized pharmaceutical target in Cornelia de Lange syndrome and different types of cancer, particularly childhood neuroblastoma. Several classes of chemotypes have been identified, which interfere with the enzyme activity of KDAC8. These compounds have been identified under equilibrium or near equilibrium conditions for inhibitor binding to the target enzyme. This study aims for the classification of KDAC8 inhibitors according to the mode of action and identification of most promising lead compounds for drug development. Methods: A continuous enzyme activity assay is used to monitor inhibition kinetics. Results: A high-throughput continuous KDAC8 activity assay is developed that provides additional mechanistic information about enzyme inhibition enabling the classification of KDAC8 inhibitors according to their mode of action. Fast reversible inhibitors act as a molecular chaperone and are capable to rescue the enzyme activity of misfolded KDAC8, while covalent inactivators and slow dissociating inhibitors do not preserve KDAC8 activity. Conclusions: The application of continuous KDAC8 activity assay reveals additional information about the mode of interaction with inhibitors, which can be used to classify KDAC8 inhibitors according to their mode of action. The approach is compatible with the high-throughput screening of compound libraries. Fast reversible inhibitors of KDAC8 act as molecular chaperones and recover enzyme activity from misfolded protein conformations. In contrast, slow-binding inhibitors and covalent inactivators of KDAC8 are not capable to recover enzyme activity.

7.
Int J Mol Sci ; 24(13)2023 Jul 03.
Article in English | MEDLINE | ID: mdl-37446224

ABSTRACT

A series of novel quinazoline-4-(3H)-one derivatives were designed and synthesized as histone deacetylase 6 (HDAC6) inhibitors based on novel quinazoline-4-(3H)-one as the cap group and benzhydroxamic acid as the linker and metal-binding group. A total of 19 novel quinazoline-4-(3H)-one analogues (5a-5s) were obtained. The structures of the target compounds were characterized using 1H-NMR, 13C-NMR, LC-MS, and elemental analyses. Characterized compounds were screened for inhibition against HDAC8 class I, HDAC4 class IIa, and HDAC6 class IIb. Among the compounds tested, 5b proved to be the most potent and selective inhibitor of HDAC6 with an IC50 value 150 nM. Some of these compounds showed potent antiproliferative activity in several tumor cell lines (HCT116, MCF7, and B16). Amongst all the compounds tested for their anticancer effect against cancer cell lines, 5c emerged to be most active against the MCF-7 line with an IC50 of 13.7 µM; it exhibited cell-cycle arrest in the G2 phase, as well as promoted apoptosis. Additionally, we noted a significant reduction in the colony-forming capability of cancer cells in the presence of 5c. At the intracellular level, selective inhibition of HDAC6 was enumerated by monitoring the acetylation of α-tubulin with a limited effect on acetyl-H3. Importantly, the obtained results suggested a potent effect of 5c at sub-micromolar concentrations as compared to the other molecules as HDAC6 inhibitors in vitro.


Subject(s)
Antineoplastic Agents , Histone Deacetylase 6/metabolism , Structure-Activity Relationship , Antineoplastic Agents/chemistry , Cell Line, Tumor , Quinazolines/pharmacology , Quinazolines/chemistry , Histone Deacetylase Inhibitors/chemistry , Cell Proliferation , Molecular Structure , Histone Deacetylase 1/metabolism
8.
Methods Mol Biol ; 2589: 207-221, 2023.
Article in English | MEDLINE | ID: mdl-36255627

ABSTRACT

Cyanoacrylates define a class of inhibitors which are capable to form a transient covalent bond with a cysteine flanking the binding site, thereby increasing the residence time and prolonging the inhibitory effect on the target protein under nonequilibrium conditions. Herein, we describe the synthetic access to cyanoacrylate-based HDAC4 inhibitors and the procedures for the characterization of the transient nature of the covalent bond between cyanoacrylates and thiols or cysteines in HDAC4.


Subject(s)
Cyanoacrylates , Cysteine , Cysteine/metabolism , Binding Sites , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylase Inhibitors/chemistry
9.
Int J Mol Sci ; 23(19)2022 Oct 04.
Article in English | MEDLINE | ID: mdl-36233076

ABSTRACT

HDAC8 is an important target in several indication areas including childhood neuroblastoma. Several isozyme selective inhibitors of HDAC8 with L-shaped structures have been developed. A theoretical study has suggested that methionine 274 (M274) would act as a "switch" that controls a transient binding pocket, which is induced upon binding of L-shaped inhibitors. This hypothesis was experimentally examined in this study. The thermostability and functionality of HDAC8 wildtype and mutant variants with exchanged M274 were analyzed using biophysical methods. Furthermore, the binding kinetics of L-shaped and linear reference inhibitors of these HDAC8 variants were determined in order to elucidate the mode of interaction. Exchange of M274 has considerable impact on enzyme activity, but is not the decisive factor for selective recognition of HDAC8 by L-shaped inhibitors.


Subject(s)
Histone Deacetylase Inhibitors , Neuroblastoma , Histone Deacetylase Inhibitors/chemistry , Histone Deacetylases/metabolism , Humans , Isoenzymes , Methionine , Repressor Proteins
10.
Chembiochem ; 23(21): e202200417, 2022 11 04.
Article in English | MEDLINE | ID: mdl-36066474

ABSTRACT

The study of cysteine modifications has gained much attention in recent years. This includes detailed investigations in the field of redox biology with focus on numerous redox derivatives like nitrosothiols, sulfenic acids, sulfinic acids and sulfonic acids resulting from increasing oxidation, S-lipidation, and perthiols. For these studies selective and rapid blocking of free protein thiols is required to prevent disulfide rearrangement. In our attempt to find new inhibitors of human histone deacetylase 8 (HDAC8) we discovered 5-sulfonyl and 5-sulfinyl substituted 1,2,4-thiadiazoles (TDZ), which surprisingly show an outstanding reactivity against thiols in aqueous solution. Encouraged by these observations we investigated the mechanism of action in detail and show that these compounds react more specifically and faster than commonly used N-ethyl maleimide, making them superior alternatives for efficient blocking of free thiols in proteins. We show that 5-sulfonyl-TDZ can be readily applied in commonly used biotin switch assays. Using the example of human HDAC8, we demonstrate that cysteine modification by a 5-sulfonyl-TDZ is easily measurable using quantitative HPLC/ESI-QTOF-MS/MS, and allows for the simultaneous measurement of the modification kinetics of seven solvent-accessible cysteines in HDAC8.


Subject(s)
Sulfhydryl Compounds , Thiadiazoles , Humans , Cysteine/metabolism , Thiadiazoles/pharmacology , Tandem Mass Spectrometry , Sulfenic Acids , Oxidation-Reduction , Histone Deacetylases/metabolism , Repressor Proteins/metabolism
11.
Beilstein J Org Chem ; 18: 837-844, 2022.
Article in English | MEDLINE | ID: mdl-35923158

ABSTRACT

Histone deacetylases (HDACs) play an essential role in the transcriptional regulation of cells through the deacetylation of nuclear histone and non-histone proteins and are promising therapeutic targets for the treatment of various diseases. Here, the synthesis of new compounds in which a hydroxamic acid residue is attached to differently substituted pyrimidine rings via a methylene group bridge of varying length as potential HDAC inhibitors is described. The target compounds were obtained by alkylation of 2-(alkylthio)pyrimidin-4(3H)-ones with ethyl 2-bromoethanoate, ethyl 4-bromobutanoate, or methyl 6-bromohexanoate followed by aminolysis of the obtained esters with hydroxylamine. Oxidation of the 2-methylthio group to the methylsulfonyl group and following treatment with amines resulted in the formation of the corresponding 2-amino-substituted derivatives, the ester group of which reacted with hydroxylamine to give the corresponding hydroxamic acids. The synthesized hydroxamic acids were tested as inhibitors of the HDAC4 and HDAC8 isoforms. Among the synthesized pyrimidine-based hydroxamic acids N-hydroxy-6-[6-methyl-2-(methylthio)-5-propylpyrimidin-4-yloxy]hexanamide was found to be the most potent inhibitor of both the HDAC4 and HDAC8 isoforms, with an IC50 of 16.6 µM and 1.2 µM, respectively.

12.
Nucleic Acids Res ; 50(5): 2566-2586, 2022 03 21.
Article in English | MEDLINE | ID: mdl-35150567

ABSTRACT

In leiomyosarcoma class IIa HDACs (histone deacetylases) bind MEF2 and convert these transcription factors into repressors to sustain proliferation. Disruption of this complex with small molecules should antagonize cancer growth. NKL54, a PAOA (pimeloylanilide o-aminoanilide) derivative, binds a hydrophobic groove of MEF2, which is used as a docking site by class IIa HDACs. However, NKL54 could also act as HDAC inhibitor (HDACI). Therefore, it is unclear which activity is predominant. Here, we show that NKL54 and similar derivatives are unable to release MEF2 from binding to class IIa HDACs. Comparative transcriptomic analysis classifies these molecules as HDACIs strongly related to SAHA/vorinostat. Low expressed genes are upregulated by HDACIs, while abundant genes are repressed. This transcriptional resetting correlates with a reorganization of H3K27 acetylation around the transcription start site (TSS). Among the upregulated genes there are several BH3-only family members, thus explaining the induction of apoptosis. Moreover, NKL54 triggers the upregulation of MEF2 and the downregulation of class IIa HDACs. NKL54 also increases the binding of MEF2D to promoters of genes that are upregulated after treatment. In summary, although NKL54 cannot outcompete MEF2 from binding to class IIa HDACs, it supports MEF2-dependent transcription through several actions, including potentiation of chromatin binding.


Subject(s)
Histone Deacetylase Inhibitors , Transcriptome , Acetylation , Histone Deacetylase Inhibitors/chemistry , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylases/metabolism , MEF2 Transcription Factors/genetics , Vorinostat/pharmacology
13.
Pharmaceuticals (Basel) ; 14(10)2021 Oct 11.
Article in English | MEDLINE | ID: mdl-34681256

ABSTRACT

Recently, we have reported that non-hydroxamate thiazolidinedione (TZD) analogs are capable of inhibiting human deacetylase 4 (HDAC4). This study aims at the dissection of the molecular determinants and kinetics of the molecular recognition of TZD ligands by HDAC4. For this purpose, a structure activity relationship analysis of 225 analogs was combined with a comprehensive study of the enzyme and binding kinetics of a variety of HDAC4 mutant variants. The experimental data were rationalized by docking to the two major conformations of HDAC4. TZD ligands are competitive inhibitors and bind via a two-step mechanism involving principal molecular recognition and induced fit. The residence time of 24 g is (34 ± 3) min and thus much larger than that of the canonical pan-HDAC inhibitor SAHA ((5 ± 2) min). Importantly, the binding kinetics can be tuned by varying the structure of the CAP group.

14.
RSC Med Chem ; 12(9): 1540-1554, 2021 Sep 23.
Article in English | MEDLINE | ID: mdl-34671737

ABSTRACT

In anticancer drug discovery, multi-targeting compounds have been beneficial due to their advantages over single-targeting compounds. For instance, VEGFR-2 has a crucial role in angiogenesis and cancer management, whereas HDACs are well-known regulators of epigenetics and have been known to contribute significantly to angiogenesis and carcinogenesis. Herein, we have reported nineteen novel VEGFR-2 and HDAC dual-targeting analogs containing diaryl-pyrazoline thiazolidinediones and their in vitro and in vivo biological evaluation. In particular, the most promising compound 14c has emerged as a dual inhibitor of VEGFR-2 and HDAC. It demonstrated anti-angiogenic activity by inhibiting in vitro HUVEC proliferation, migration, and tube formation. Moreover, an in vivo CAM assay showed that 14c repressed new capillary formation in CAMs. In particular, 14c exhibited cytotoxicity potential on different cancer cell lines such as MCF-7, K562, A549, and HT-29. Additionally, 14c demonstrated significant potency and selectivity against HDAC4 in the sub-micromolar range. To materialize the hypothesis, we also performed molecular docking on the crystal structures of both VEGFR-2 (PDB ID: 1YWN) and HDAC4 (PDB-ID: 4CBY), which corroborated the designing and biological activity. The results indicated that compound 14c could be a potential lead to develop more optimized multi-target analogs with enhanced potency and selectivity.

15.
Future Med Chem ; 13(22): 1963-1986, 2021 11.
Article in English | MEDLINE | ID: mdl-34581188

ABSTRACT

Background: Angiogenesis deregulation is often linked to cancer and is thus an essential target. Materials & methods: Twenty-nine compounds were developed as VEGFR-2 inhibitors. Compounds were evaluated to determine their antiangiogenic activity. Results: B1, PB11 and PB16 showed HUVEC's IC50 scores in the submicromolar range. B1, B2 and PB16 reduced cellular migration and capillary tube formation of HUVECs. VEGFR-2 inhibitory activity was found in the nanomolar range: 200 nM of B1, 500 nM of B2 and 600 nM of PB16. B1 and PB16 suppressed the formation of new capillaries on growing CAMs. B1 and PB16 occupied the ATP site and allosteric pocket of VEGFR-2 in docking studies. Conclusion: These compounds can target VEGFR-2 and are endowed with in vitro and in vivo antiangiogenic activity.


Subject(s)
Angiogenesis Inhibitors/pharmacology , Drug Development , Neovascularization, Physiologic/drug effects , Protein Kinase Inhibitors/pharmacology , Pyrazoles/pharmacology , Thiazolidinediones/pharmacology , Angiogenesis Inhibitors/chemical synthesis , Angiogenesis Inhibitors/chemistry , Humans , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Pyrazoles/chemical synthesis , Pyrazoles/chemistry , Thiazolidinediones/chemical synthesis , Thiazolidinediones/chemistry , Vascular Endothelial Growth Factor Receptor-2/antagonists & inhibitors , Vascular Endothelial Growth Factor Receptor-2/metabolism
16.
Bioorg Chem ; 116: 105350, 2021 11.
Article in English | MEDLINE | ID: mdl-34547645

ABSTRACT

In the present study, two novel series of compounds incorporating naphthyl and pyridyl linker were synthesized and biological assays revealed 5-((6-(2-(5-(2-chlorophenyl)-3-(4-fluorophenyl)-4,5-dihydro-1H-pyrazol-1-yl)-2-oxoethoxy) naphthalene-2-yl)methylene)thiazolidine-2,4-dione (14b) as the most potent dual inhibitors of vascular endothelial growth factors receptor-2 (VEGFR-2) and histone deacetylase 4 (HDAC4). Compounds 13b, 14b, 17f, and 21f were found to stabilize HDAC4; where, pyridyl linker swords were endowed with higher stabilization effects than naphthyl linker. Also, 13b and 14b showed best inhibitory activity on VEGFR-2 as compared to others. Compound 14b was most potent as evident by in-vitro and in-vivo biological assessments. It displayed anti-angiogenic potential by inhibiting endothelial cell proliferation, migration, tube formation and also suppressed new capillary formation in the growing chick chorioallantoic membranes (CAMs). It showed selectivity and potency towards HDAC4 as compared to other HDAC isoforms. Compound 14b (25 mg/kg, i.p.) also indicated exceptional antitumor efficacy on in-vivo animal xenograft model of human colorectal adenocarcinoma (HT-29). The mechanism of action of 14b was also confirmed by western blot.


Subject(s)
Angiogenesis Inhibitors/pharmacology , Antineoplastic Agents/pharmacology , Histone Deacetylase Inhibitors/pharmacology , Neovascularization, Pathologic/drug therapy , Protein Kinase Inhibitors/pharmacology , Pyrazoles/pharmacology , Thiazolidinediones/pharmacology , Angiogenesis Inhibitors/chemical synthesis , Angiogenesis Inhibitors/chemistry , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Histone Deacetylase Inhibitors/chemical synthesis , Histone Deacetylase Inhibitors/chemistry , Histone Deacetylases/metabolism , Humans , Mice , Molecular Structure , Neoplasms, Experimental/drug therapy , Neoplasms, Experimental/metabolism , Neoplasms, Experimental/pathology , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Pyrazoles/chemical synthesis , Pyrazoles/chemistry , Repressor Proteins/antagonists & inhibitors , Repressor Proteins/metabolism , Structure-Activity Relationship , Thiazolidinediones/chemical synthesis , Thiazolidinediones/chemistry , Vascular Endothelial Growth Factor Receptor-2/antagonists & inhibitors , Vascular Endothelial Growth Factor Receptor-2/metabolism
17.
Molecules ; 26(17)2021 Aug 25.
Article in English | MEDLINE | ID: mdl-34500583

ABSTRACT

Histone deacetylases (HDACs) remove acetyl groups from acetylated lysine residues and have a large variety of substrates and interaction partners. Therefore, it is not surprising that HDACs are involved in many diseases. Most inhibitors of zinc-dependent HDACs (HDACis) including approved drugs contain a hydroxamate as a zinc-binding group (ZBG), which is by far the biggest contributor to affinity, while chemical variation of the residual molecule is exploited to create more or less selectivity against HDAC isozymes or other metalloproteins. Hydroxamates have a propensity for nonspecificity and have recently come under considerable suspicion because of potential mutagenicity. Therefore, there are significant concerns when applying hydroxamate-containing compounds as therapeutics in chronic diseases beyond oncology due to unwanted toxic side effects. In the last years, several alternative ZBGs have been developed, which can replace the critical hydroxamate group in HDACis, while preserving high potency. Moreover, these compounds can be developed into highly selective inhibitors. This review aims at providing an overview of the progress in the field of non-hydroxamic HDACis in the time period from 2015 to present. Formally, ZBGs are clustered according to their binding mode and structural similarity to provide qualitative assessments and predictions based on available structural information.


Subject(s)
Carrier Proteins/metabolism , Histone Deacetylases/metabolism , Hydroxamic Acids/metabolism , Zinc/metabolism , Animals , Histone Deacetylase Inhibitors/pharmacology , Humans , Hydroxylamine/metabolism , Structure-Activity Relationship
18.
J Med Chem ; 64(10): 6949-6971, 2021 05 27.
Article in English | MEDLINE | ID: mdl-34006099

ABSTRACT

Monotargeting anticancer agents suffer from resistance and target nonspecificity concerns, which can be tackled with a multitargeting approach. The combined treatment with HDAC inhibitors and PPARγ agonists has displayed potential antitumor effects. Based on these observations, this work involves design and synthesis of molecules that can simultaneously target PPARγ and HDAC. Several out of 25 compounds inhibited HDAC4, and six compounds acted as dual-targeting agents. Compound 7i was the most potent, with activity toward PPARγ EC50 = 0.245 µM and HDAC4 IC50 = 1.1 µM. Additionally, compounds 7c and 7i were cytotoxic to CCRF-CEM cells (CC50 = 2.8 and 9.6 µM, respectively), induced apoptosis, and caused DNA fragmentation. Furthermore, compound 7c modulated the expression of c-Myc, cleaved caspase-3, and caused in vivo tumor regression in CCRF-CEM tumor xenografts. Thus, this study provides a basis for the rational design of dual/multitargeting agents that could be developed further as anticancer therapeutics.


Subject(s)
Drug Design , Histone Deacetylases/metabolism , PPAR gamma/metabolism , Repressor Proteins/metabolism , Thiazolidinediones/chemistry , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Apoptosis/drug effects , Binding Sites , Cell Cycle Checkpoints/drug effects , Cell Line, Tumor , Drug Screening Assays, Antitumor , Humans , Mice , Mice, SCID , Molecular Docking Simulation , Neoplasms/drug therapy , Neoplasms/pathology , PPAR gamma/chemistry , PPAR gamma/genetics , Repressor Proteins/antagonists & inhibitors , Structure-Activity Relationship , Thiazolidinediones/metabolism , Thiazolidinediones/pharmacology , Thiazolidinediones/therapeutic use , Transcriptional Activation/drug effects , Transplantation, Heterologous
19.
J Med Chem ; 64(9): 5838-5849, 2021 05 13.
Article in English | MEDLINE | ID: mdl-33876629

ABSTRACT

Sirtuins are signaling hubs orchestrating the cellular response to various stressors with roles in all major civilization diseases. Sirtuins remove acyl groups from lysine residues of proteins, thereby controlling their activity, turnover, and localization. The seven human sirtuins, SirT1-7, are closely related in structure, hindering the development of specific inhibitors. Screening 170,000 compounds, we identify and optimize SirT1-specific benzoxazine inhibitors, Sosbo, which rival the efficiency and surpass the selectivity of selisistat (EX527). The compounds inhibit the deacetylation of p53 in cultured cells, demonstrating their ability to permeate biological membranes. Kinetic analysis of inhibition and docking studies reveal that the inhibitors bind to a complex of SirT1 and nicotinamide adenine dinucleotide, similar to selisistat. These new SirT1 inhibitors are valuable alternatives to selisistat in biochemical and cell biological studies. Their greater selectivity may allow the development of better targeted drugs to combat SirT1 activity in diseases such as cancer, Huntington's chorea, or anorexia.


Subject(s)
Benzoxazines/chemistry , Sirtuin 1/antagonists & inhibitors , Acetylation/drug effects , Amides/chemistry , Benzoxazines/metabolism , Benzoxazines/pharmacology , Binding Sites , Carbazoles/chemistry , Carbazoles/metabolism , Cell Line, Tumor , Drug Evaluation, Preclinical , Humans , Inhibitory Concentration 50 , Kinetics , Molecular Docking Simulation , NAD/chemistry , NAD/metabolism , Protein Isoforms/antagonists & inhibitors , Protein Isoforms/genetics , Protein Isoforms/metabolism , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/isolation & purification , Sirtuin 1/genetics , Sirtuin 1/metabolism , Structure-Activity Relationship , Tumor Suppressor Protein p53/metabolism
20.
Bioorg Chem ; 107: 104527, 2021 02.
Article in English | MEDLINE | ID: mdl-33317839

ABSTRACT

In search for new and safer anti-cancer agents, a structurally guided pharmacophore hybridization strategy of two privileged scaffolds, namely diaryl pyrazolines and imidazolidine-2,4-dione (hydantoin), was adopted resulting in a newfangled series of compounds (H1-H22). Herein, a bio-isosteric replacement of "pyrrolidine-2,5-dione" moiety of our recently reported antitumor hybrid incorporating diaryl pyrazoline and pyrrolidine-2,5-dione scaffolds with "imidazoline-2,4-dione" moiety has been incorporated. Complete biological studies revealed the most potent analog among all i.e. compound H13, which was at-least 10-fold more potent compared to the corresponding pyrrolidine-2,5-dione, in colon and breast cancer cells. In-vitro studies showed activation of caspases, arrest of G0/G1 phase of cell cycle, decrease in the expression of anti-apoptotic protein (Bcl-2) and increased DNA damage. In-vivo assay on HT-29 (human colorectal adenocarcinoma) animal xenograft model unveiled the significant anti-tumor efficacy along with oral bioavailability with maximum TGI 36% (i.p.) and 44% (per os) at 50 mg/kg dose. These findings confirm the suitability of hybridized pyrazoline and imidazolidine-2,4-dione analog H13 for its anti-cancer potential and starting-point for the development of more efficacious analogs.


Subject(s)
Antineoplastic Agents/therapeutic use , Hydantoins/therapeutic use , Neoplasms/drug therapy , Pyrazoles/therapeutic use , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/metabolism , Antineoplastic Agents/pharmacokinetics , Apoptosis/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , DNA Breaks, Double-Stranded/drug effects , Drug Design , Drug Screening Assays, Antitumor , G1 Phase Cell Cycle Checkpoints/drug effects , Humans , Hydantoins/chemical synthesis , Hydantoins/metabolism , Hydantoins/pharmacokinetics , Male , Mice, Inbred BALB C , Mice, Nude , Molecular Docking Simulation , Protein Binding , Proto-Oncogene Proteins c-bcl-2/metabolism , Pyrazoles/chemical synthesis , Pyrazoles/metabolism , Pyrazoles/pharmacokinetics , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...