Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
Add more filters










Publication year range
1.
Phys Rev Lett ; 120(7): 074801, 2018 Feb 16.
Article in English | MEDLINE | ID: mdl-29542949

ABSTRACT

We report on the experimental studies of laser driven ion acceleration from a double-layer target where a near-critical density target with a few-micron thickness is coated in front of a nanometer-thin diamondlike carbon foil. A significant enhancement of proton maximum energies from 12 to ∼30 MeV is observed when a relativistic laser pulse impinges on the double-layer target under linear polarization. We attributed the enhanced acceleration to superponderomotive electrons that were simultaneously measured in the experiments with energies far beyond the free-electron ponderomotive limit. Our interpretation is supported by two-dimensional simulation results.

2.
Phys Rev Lett ; 115(6): 064801, 2015 Aug 07.
Article in English | MEDLINE | ID: mdl-26296119

ABSTRACT

Ultraintense laser pulses with a few-cycle rising edge are ideally suited to accelerating ions from ultrathin foils, and achieving such pulses in practice represents a formidable challenge. We show that such pulses can be obtained using sufficiently strong and well-controlled relativistic nonlinearities in spatially well-defined near-critical-density plasmas. The resulting ultraintense pulses with an extremely steep rising edge give rise to significantly enhanced carbon ion energies consistent with a transition to radiation pressure acceleration.

3.
Phys Rev Lett ; 113(23): 235002, 2014 Dec 05.
Article in English | MEDLINE | ID: mdl-25526132

ABSTRACT

Double-foil targets separated by a low density plasma and irradiated by a petawatt-class laser are shown to be a copious source of coherent broadband radiation. Simulations show that a dense sheet of relativistic electrons is formed during the interaction of the laser with the tenuous plasma between the two foils. The coherent motion of the electron sheet as it transits the second foil results in strong broadband emission in the extreme ultraviolet, consistent with our experimental observations.

4.
Article in English | MEDLINE | ID: mdl-25375611

ABSTRACT

Attosecond bursts of coherent synchrotronlike radiation are found when driving ultrathin relativistic electron disks in a quasi-one-dimensional regime of wakefield acceleration, in which the laser waist is larger than the wake wavelength. The disks of overcritical density shrink radially due to focusing wakefields, thus providing the transverse currents for the emission of an intense, radially polarized, half-cycle pulse of about 100 attoseconds in duration. The electromagnetic pulse first focuses to a peak intensity (7×10(20)W/cm(2)) 10 times larger than the driving pulse and then emerges as a conical beam. Basic dynamics of the radiative process are derived analytically and in agreement with particle-in-cell simulations. By making use of gas targets instead of solids to form the ultrathin disks, this method allows for high repetition rates required for applications.

5.
Phys Rev Lett ; 112(12): 123902, 2014 Mar 28.
Article in English | MEDLINE | ID: mdl-24724650

ABSTRACT

The polarization dependence of laser-driven coherent synchrotron emission transmitted through thin foils is investigated experimentally. The harmonic generation process is seen to be almost completely suppressed for circular polarization opening up the possibility of producing isolated attosecond pulses via polarization gating. Particle-in-cell simulations suggest that current laser pulses are capable of generating isolated attosecond pulses with high pulse energies.

6.
Phys Rev Lett ; 110(13): 135002, 2013 Mar 29.
Article in English | MEDLINE | ID: mdl-23581329

ABSTRACT

Controlled electron injection into a laser-driven wakefield at a well defined space and time is reported based on particle-in-cell simulations. Key novel ingredients are an underdense plasma target with an up-ramp density profile followed by a plateau and a fairly large laser focus diameter that leads to an essentially one-dimensional (1D) regime of laser wakefield, which is different from the bubble (complete blowout) regime occurring for tightly focused drive beams. The up-ramp profile causes 1D wave breaking to occur sharply at the up-ramp-plateau transition. As a result, it generates an ultrathin (few nanometer, corresponding to attosecond duration), strongly overdense relativistic electron sheet that is injected and accelerated in the wakefield. A peaked electron energy spectrum and high charge (∼nC) distinguish the final sheet.

7.
Phys Rev E Stat Nonlin Soft Matter Phys ; 83(3 Pt 2): 036407, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21517604

ABSTRACT

By the use of two-dimensional particle-in-cell simulations, we clarify the terahertz (THz) radiation mechanism from a plasma filament formed by an intense femtosecond laser pulse. The nonuniform plasma density of the filament leads to a net radiating current for THz radiation. This current is mainly located within the pulse and the first cycle of the wakefield. As the laser pulse propagates, a single-cycle and radially polarized THz pulse is constructively built up forward. The single-cycle shape is mainly due to radiation damping effect.

8.
Phys Rev Lett ; 104(23): 234801, 2010 Jun 11.
Article in English | MEDLINE | ID: mdl-20867244

ABSTRACT

A novel scheme is proposed to generate uniform relativistic electron layers for coherent Thomson backscattering. A few-cycle laser pulse is used to produce the electron layer from an ultrathin solid foil. The key element of the new scheme is an additional foil that reflects the drive-laser pulse, but lets the electrons pass almost unperturbed. Making use of two-dimensional particle-in-cell simulations and well-known basic theory, it is shown that the electrons, after interacting with both the drive and reflected laser pulses, form a very uniform flyer freely cruising with a high relativistic γ factor exactly in the drive-laser direction (no transverse momentum). It backscatters the probe light with a full Doppler shift factor of 4γ(2). The reflectivity and its decay due to layer expansion are discussed.


Subject(s)
Electrons , Lasers , Scattering, Radiation , Models, Theoretical
9.
Phys Rev Lett ; 103(13): 135001, 2009 Sep 25.
Article in English | MEDLINE | ID: mdl-19905516

ABSTRACT

We report on a self-organizing, quasistable regime of laser proton acceleration, producing 1 GeV nanocoulomb proton bunches from laser foil interaction at an intensity of 7 x 10;{21} W/cm;{2}. The results are obtained from 2D particle-in-cell simulations, using a circular polarized laser pulse with Gaussian transverse profile, normally incident on a planar, 500 nm thick hydrogen foil. While foil plasma driven in the wings of the driving pulse is dispersed, a stable central clump with 1-2lambda diameter is forming on the axis. The stabilization is related to laser light having passed the transparent parts of the foil in the wing region and enfolding the central clump that is still opaque. Varying laser parameters, it is shown that the results are stable within certain margins and can be obtained both for protons and heavier ions such as He;{2+}.

10.
Phys Rev Lett ; 102(12): 124801, 2009 Mar 27.
Article in English | MEDLINE | ID: mdl-19392288

ABSTRACT

We report on an electron accelerator based on few-cycle (8 fs full width at half maximum) laser pulses, with only 40 mJ energy per pulse, which constitutes a previously unexplored parameter range in laser-driven electron acceleration. The produced electron spectra are monoenergetic in the tens-of-MeV range and virtually free of low-energy electrons with thermal spectrum. The electron beam has a typical divergence of 5-10 mrad. The accelerator is routinely operated at 10 Hz and constitutes a promising source for several applications. Scalability of the few-cycle driver in repetition rate and energy implies that the present work also represents a step towards user friendly laser-based accelerators.

11.
Phys Rev Lett ; 103(24): 245003, 2009 Dec 11.
Article in English | MEDLINE | ID: mdl-20366205

ABSTRACT

We present experimental studies on ion acceleration from ultrathin diamondlike carbon foils irradiated by ultrahigh contrast laser pulses of energy 0.7 J focused to peak intensities of 5x10(19) W/cm2. A reduction in electron heating is observed when the laser polarization is changed from linear to circular, leading to a pronounced peak in the fully ionized carbon spectrum at the optimum foil thickness of 5.3 nm. Two-dimensional particle-in-cell simulations reveal that those C6+ ions are for the first time dominantly accelerated in a phase-stable way by the laser radiation pressure.

12.
Opt Express ; 15(10): 6036-43, 2007 May 14.
Article in English | MEDLINE | ID: mdl-19546907

ABSTRACT

A linear accelerator based source of coherent radiation, FLASH (Free-electron LASer in Hamburg) provides ultra-intense femtosecond radiation pulses at wavelengths from the extreme ultraviolet (XUV; lambda<100nm) to the soft X-ray (SXR; lambda<30nm) spectral regions. 25-fs pulses of 32-nm FLASH radiation were used to determine the ablation parameters of PMMA - poly (methyl methacrylate). Under these irradiation conditions the attenuation length and ablation threshold were found to be (56.9+/-7.5) nm and approximately 2 mJ*cm(-2), respectively. For a second wavelength of 21.7 nm, the PMMA ablation was utilized to image the transverse intensity distribution within the focused beam at mum resolution by a method developed here.

13.
Phys Rev Lett ; 93(9): 095001, 2004 Aug 27.
Article in English | MEDLINE | ID: mdl-15447109

ABSTRACT

We demonstrate the amplification of a femtosecond signal pulse in an underdense plasma by a novel mechanism called superradiant amplification. The pulse is amplified by a counterpropagating few picosecond long pump pulse. In the superradiant regime, the ponderomotive forces exceed the electrostatic forces and arrange the plasma electrons to reflect the pump light into the signal pulse. We found a significant amplification in energy and intensity. The time structure of the amplified signal pulse carries intrinsic features of the superradiant regime. Sub-10-fs pulses of petawatt power appear feasible.

14.
Phys Rev Lett ; 93(4): 045003, 2004 Jul 23.
Article in English | MEDLINE | ID: mdl-15323768

ABSTRACT

We investigate the influence of the laser prepulse due to amplified spontaneous emission on the acceleration of protons in thin-foil experiments. We show that changing the prepulse duration has a profound effect on the maximum proton energy. We find an optimal value for the target thickness, which strongly depends on the prepulse duration. At this optimal thickness, the rear side acceleration process leads to the highest proton energies, while this mechanism is rendered ineffective for thinner targets due to a prepulse-induced plasma formation at the rear side. In this case, the protons are primarily accelerated by the front side mechanism leading to lower cutoff energies.

15.
Phys Rev Lett ; 92(18): 185001, 2004 May 07.
Article in English | MEDLINE | ID: mdl-15169492

ABSTRACT

The harmonic emission from thin solid carbon and aluminum foils, irradiated by 150 fs long frequency-doubled Ti:sapphire laser pulses at lambda=395 nm and peak intensities of a few 10(18) W/cm(2), has been studied. In addition to the harmonics emitted from the front side in the specular direction, we observe harmonics up to the 10th order, including the fundamental from the rear side in the direction of the incident beam, while the foil is still strongly overdense. The experimental observations are well reproduced by particle-in-cell simulations. They reveal that strong coupling between the laser-irradiated side and the rear side occurs via the nonlocal electron current driven by the laser light.

16.
Phys Rev Lett ; 88(24): 244502, 2002 Jun 17.
Article in English | MEDLINE | ID: mdl-12059304

ABSTRACT

Scaling laws governing implosions of thin shells in converging flows are established by analyzing the implosion trajectories in the (A,M) parametric plane, where A is the in-flight aspect ratio, and M is the implosion Mach number. Three asymptotic branches, corresponding to three implosion phases, are identified for each trajectory in the limit of A,M >>1. It is shown that there exists a critical value gamma(cr) = 1+2/nu (nu = 1,2 for, respectively, cylindrical and spherical flows) of the adiabatic index gamma, which separates two qualitatively different patterns of the density buildup in the last phase of implosion. The scaling of the stagnation density rho(s) and pressure P(s) with the peak value M(0) of the Mach number is obtained.

17.
Phys Rev Lett ; 88(5): 055004, 2002 Feb 04.
Article in English | MEDLINE | ID: mdl-11863737

ABSTRACT

We propose a mechanism that leads to efficient acceleration of electrons in plasma by two counterpropagating laser pulses. It is triggered by stochastic motion of electrons when the laser fields exceed some threshold amplitudes, as found in single-electron dynamics. It is further confirmed in particle-in-cell simulations. In vacuum or tenuous plasma, electron acceleration in the case with two colliding laser pulses can be much more efficient than with one laser pulse only. In plasma at moderate densities, such as a few percent of the critical density, the amplitude of the Raman-backscattered wave is high enough to serve as the second counterpropagating pulse to trigger the electron stochastic motion. As a result, even with one intense laser pulse only, electrons can be heated up to a temperature much higher than the corresponding laser ponderomotive potential.

18.
Phys Rev E Stat Nonlin Soft Matter Phys ; 65(1 Pt 2): 016405, 2002 Jan.
Article in English | MEDLINE | ID: mdl-11800788

ABSTRACT

Electron-positron and gamma-photon production by high-intensity laser pulses is investigated for a special target geometry, in which two pulses irradiate a very thin foil (10-100 nm < skin depth) with same intensity from opposite sides. A stationary solution is derived describing foil compression between the two pulses. Circular polarization is chosen such that all electrons and positrons rotate in the plane of the foil. We discuss the laser and target parameters required in order to optimize the gamma photon and pair production rate. We find a gamma-photon intensity of 7x10(27)/sr s and a positron density of 5x10(22)/cm(3) when using two 330 fs, 7x10(21) W/cm(2) laser pulses.

19.
Phys Rev Lett ; 86(15): 3336-9, 2001 Apr 09.
Article in English | MEDLINE | ID: mdl-11327964

ABSTRACT

The stagnation pressure p(s) of imploding cylindrical ( n = 2) and spherical ( n = 3) shells is found to scale as p(s)/p(0)~M(2(n+1)/(gamma+1))(0), where M0 is the Mach number of the imploding shell and p(0) its maximum pressure. The result holds approximately for Mach numbers in the range 2

20.
Article in English | MEDLINE | ID: mdl-11088579

ABSTRACT

The interaction of ultrashort subpicosecond laser pulses with initially cold and solid matter is investigated in a wide intensity range (10(11) to 10(17) W/cm(2)) by means of the hydrodynamic code MULTI-FS, which is an extension of the long pulse version of MULTI [R. Ramis, R. Schmalz, and J. Meyer-ter-Vehn, Comput. Phys. Commun. 49, 475 (1988)]. Essential modifications for the treatment of ultrashort pulses are the solution of Maxwell's equations in a steep gradient plasma, consideration of the nonequilibrium between electrons and ions, and a model for the electrical and thermal conductivity covering the wide range from the solid state to the high temperature plasma. The simulations are compared with several absorption measurements performed with aluminum targets at normal and oblique incidence. Good agreement is obtained by an appropriate choice of the electron-ion energy exchange time (characterized by 10 to 20 ps in cold solid Al). In addition we discuss the intensity scaling of the temperature, of the pressure, and of the density, where the laser energy is deposited in the expanding plasma, as well as the propagation of the heat wave and the shock wave into the solid. For laser pulse durations >/=150 fs considered in this paper the amount of isochorically heated matter at solid density is determined by the depth of the electron heat wave in the whole intensity range.

SELECTION OF CITATIONS
SEARCH DETAIL
...