Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Neuroimage ; 264: 119749, 2022 12 01.
Article in English | MEDLINE | ID: mdl-36379420

ABSTRACT

PET and fMRI studies suggest that auditory narrative comprehension is supported by a bilateral multilobar cortical network. The superior temporal resolution of magnetoencephalography (MEG) makes it an attractive tool to investigate the dynamics of how different neuroanatomic substrates engage during narrative comprehension. Using beta-band power changes as a marker of cortical engagement, we studied MEG responses during an auditory story comprehension task in 31 healthy adults. The protocol consisted of two runs, each interleaving 7 blocks of the story comprehension task with 15 blocks of an auditorily presented math task as a control for phonological processing, working memory, and attention processes. Sources at the cortical surface were estimated with a frequency-resolved beamformer. Beta-band power was estimated in the frequency range of 16-24 Hz over 1-sec epochs starting from 400 msec after stimulus onset until the end of a story or math problem presentation. These power estimates were compared to 1-second epochs of data before the stimulus block onset. The task-related cortical engagement was inferred from beta-band power decrements. Group-level source activations were statistically compared using non-parametric permutation testing. A story-math contrast of beta-band power changes showed greater bilateral cortical engagement within the fusiform gyrus, inferior and middle temporal gyri, parahippocampal gyrus, and left inferior frontal gyrus (IFG) during story comprehension. A math-story contrast of beta power decrements showed greater bilateral but left-lateralized engagement of the middle frontal gyrus and superior parietal lobule. The evolution of cortical engagement during five temporal windows across the presentation of stories showed significant involvement during the first interval of the narrative of bilateral opercular and insular regions as well as the ventral and lateral temporal cortex, extending more posteriorly on the left and medially on the right. Over time, there continued to be sustained right anterior ventral temporal engagement, with increasing involvement of the right anterior parahippocampal gyrus, STG, MTG, posterior superior temporal sulcus, inferior parietal lobule, frontal operculum, and insula, while left hemisphere engagement decreased. Our findings are consistent with prior imaging studies of narrative comprehension, but in addition, they demonstrate increasing right-lateralized engagement over the course of narratives, suggesting an important role for these right-hemispheric regions in semantic integration as well as social and pragmatic inference processing.


Subject(s)
Brain Mapping , Comprehension , Adult , Humans , Brain Mapping/methods , Comprehension/physiology , Magnetoencephalography , Magnetic Resonance Imaging , Temporal Lobe
2.
Sci Rep ; 12(1): 14407, 2022 08 24.
Article in English | MEDLINE | ID: mdl-36002603

ABSTRACT

Machine learning analyses were performed on graph theory (GT) metrics extracted from brain functional and morphological data from temporal lobe epilepsy (TLE) patients in order to identify intrinsic network phenotypes and characterize their clinical significance. Participants were 97 TLE and 36 healthy controls from the Epilepsy Connectome Project. Each imaging modality (i.e., Resting-state functional Magnetic Resonance Imaging (RS-fMRI), and structural MRI) rendered 2 clusters: one comparable to controls and one deviating from controls. Participants were minimally overlapping across the identified clusters, suggesting that an abnormal functional GT phenotype did not necessarily mean an abnormal morphological GT phenotype for the same subject. Morphological clusters were associated with a significant difference in the estimated lifetime number of generalized tonic-clonic seizures and functional cluster membership was associated with age. Furthermore, controls exhibited significant correlations between functional GT metrics and cognition, while for TLE participants morphological GT metrics were linked to cognition, suggesting a dissociation between higher cognitive abilities and GT-derived network measures. Overall, these findings demonstrate the existence of clinically meaningful minimally overlapping phenotypes of morphological and functional GT networks. Functional network properties may underlie variance in cognition in healthy brains, but in the pathological state of epilepsy the cognitive limits might be primarily related to structural cerebral network properties.


Subject(s)
Connectome , Epilepsy, Temporal Lobe , Brain/diagnostic imaging , Connectome/methods , Epilepsy, Temporal Lobe/diagnostic imaging , Humans , Machine Learning , Magnetic Resonance Imaging/methods , Phenotype
3.
J Neuroimaging ; 32(6): 1193-1200, 2022 11.
Article in English | MEDLINE | ID: mdl-35906713

ABSTRACT

BACKGROUND AND PURPOSE: Traumatic brain injury (TBI) can lead to movement and balance deficits. In addition to physical therapy, brain-based neurorehabilitation efforts have begun to show promise in improving these deficits. The present study investigated the effectiveness of translingual neural stimulation (TLNS) on patients with mild-to-moderate TBI (mmTBI) and related brain connectivity using a resting-state functional connectivity (RSFC) approach. METHODS: Resting-state images with 5-min on GE750 3T scanner were acquired from nine participants with mmTBI. Paired t-test was used for calculating changes in RSFC and behavioral scores before and after the TLNS intervention. The balance and movement performances related to mmTBI were evaluated by Sensory Organization Test (SOT) and Dynamic Gait Index (DGI). RESULTS: Compared to pre-TLNS intervention, significant behavioral changes in SOT and DGI were observed. The analysis revealed increased RSFC between the left postcentral gyrus and left inferior parietal lobule and left Brodmann Area 40, as well as the increased RSFC between the right culmen and right declive, indicating changes due to TLNS treatment. However, there were no correlations between the sensory/somatomotor (or visual or cerebellar) network and SOT/DGI behavioral performance. CONCLUSIONS: Although the limited sample size may have led to lack of significant correlations with functional assessments, these results provide preliminary evidence that TLNS in conjunction with physical therapy can induce brain plasticity in TBI patients with balance and movement deficits.


Subject(s)
Brain Concussion , Brain Injuries, Traumatic , Humans , Rest/physiology , Magnetic Resonance Imaging/methods , Brain , Neuronal Plasticity/physiology , Brain Concussion/diagnostic imaging , Brain Concussion/therapy , Brain Injuries, Traumatic/diagnostic imaging , Brain Injuries, Traumatic/therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...