Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 60
Filter
1.
Int J Spine Surg ; 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38866587

ABSTRACT

BACKGROUND: Anterior cervical discectomy and fusion (ACDF) is known to elicit adverse biomechanical effects on immediately adjacent segments; however, its impact on the kinematics of the remaining nonadjacent cervical levels has not been understood. This study aimed to explore the biomechanical impact of ACDF on kinematics beyond the immediate fusion site. We hypothesized that compensatory motion following single-level ACDF is not predictably distributed to adjacent segments due to compensation from noncontiguous levels. METHODS: Six fresh-frozen cervical spines (C2-T1) underwent fluoroscopic screening and sagittal and coronal reformats from computed tomography scans and were utilized to grade segmental degeneration. Each specimen was tested to 30° of flexion and extension intact and following single-level ACDF at the C5-C6 level. The motions of each vertebral body were tracked using 3-dimensional (3D) motion capture into an inverse kinematics model, facilitating correlations between the 3D reconstruction from computed tomography images and the 3D motion capture data. This model was used to calculate each level's flexion/extension range of motion (ROM). RESULTS: Single-level fusion at the C5-C6 level across all specimens resulted in a significant motion reduction of -6.8° (P = 0.002). No significant change in ROM occurred in the immediate adjacent segments C4-C5 (P = 0.07) or C6-C7 (P = 0.15). Hypermobility was observed in 2 specimens (33%) exclusively in adjacent segments. In contrast, the other 4 spines (66%) displayed hypermobility at noncontiguous segments. Hypermobility occurred in 42% (5/12) of the adjacent segments, 28% (5/18) of the noncontiguous segments, and 50% (3/6) of the cervicothoracic segments. CONCLUSION: Single-level ACDF impacts ROM beyond adjacent segments, extending to noncontiguous levels. Compensatory motion, not limited to adjacent levels, may be influenced by degenerative changes in noncontiguous segments. Surprisingly, hypermobility may not occur in adjacent segments after ACDF. CLINICAL RELEVANCE: Overall, the multifaceted biomechanical effects of ACDF underscore the need for a comprehensive understanding of cervical spine dynamics beyond immediate adjacency, and it needs to be taken into consideration when planning single-level ACDF.

2.
J Arthroplasty ; 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38537838

ABSTRACT

BACKGROUND: Dislocation after total hip arthroplasty (THA) is a primary reason for THA revision. During THA through the direct anterior approach (DAA), the iliofemoral ligament, which provides the main resistance to external rotation (ER) of the hip, is commonly partially transected. We asked: (1) what is the contribution of the medial iliofemoral ligament to resisting ER after DAA THA? and (2) how much resistance to ER can be restored by repairing the ligament? METHODS: A fellowship-trained surgeon performed DAA THA on 9 cadaveric specimens. The specimens were computed tomography scanned before and after implantation. Prior to testing, the ER range of motion of each specimen to impingement in neutral and 10° of extension was computationally predicted. Each specimen was tested on a 6-degrees-of-freedom robotic manipulator. The pelvis was placed in neutral and 10° of extension. The femur was externally rotated until it reached the specimen's impingement target. Total ER torque was recorded with the medial iliofemoral ligament intact, after transecting the ligament, and after repair. Torque at extremes of motion was calculated for each condition. To isolate the contribution of the native ligament, the torque for the transected state was subtracted from both the native and repaired conditions. RESULTS: The medial iliofemoral ligament contributed an average of 68% (range, 34 to 87) of the total torque at the extreme of motion in neutral and 80% (58 to 97) in 10° of extension. The repaired ligament contributed 17% (1 to 54) of the total torque at the extreme of motion in neutral and 14% (5 to 38) in 10° of extension, restoring on average 18 to 25% of the native resistance against ER. CONCLUSIONS: The medial iliofemoral ligament was an important contributor to the hip torque at the extreme of motion during ER. Repairing the ligament restored a fraction of its ability to generate torque to resist ER.

3.
Arthrosc Sports Med Rehabil ; 6(1): 100831, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38169763

ABSTRACT

Purpose: To characterize the ability of the intact medial patellofemoral ligament (MPFL) and the adductor transfer and adductor sling MPFL reconstruction techniques to resist subluxation and dislocation in a cadaveric model. Methods: Nine fresh-frozen cadaveric knees were placed on a custom testing fixture with the femur fixed parallel to the floor, the tibia placed in 20° of flexion, and the patella attached to a load cell. The patella was displaced laterally, and subluxation load (in newtons), dislocation load (in newtons), maximum failure load (in newtons), patellar displacement at failure, and mode of failure were recorded. Testing was conducted with the MPFL intact and after the adductor sling and adductor transfer reconstruction techniques. Statistical analysis was completed using 1-way repeated-measures analysis of variance with the Holm-Sidák post hoc test. Results: The subluxation load was not significantly different between groups. The native MPFL dislocation load was significantly higher than the dislocation loads of both reconstruction techniques, but no significant difference between the dislocation loads of the 2 reconstruction techniques occurred. The native MPFL failure load was significantly higher than the failure loads of both reconstruction techniques. The adductor sling failure load was significantly higher than the adductor transfer failure load. The mode of failure varied across groups. The native MPFL failed by femoral avulsion, patellar avulsion, and midsubstance tear. The main mode of failure for adductor transfer was pullout, whereas failure for the adductor sling technique most often occurred at the sutures. Most of the native MPFLs and all adductor sling reconstructions failed after dislocation. The adductor transfer reconstructions were much more variable, with failures spanning from before subluxation through dislocation. Conclusions: Our cadaveric model showed that neither the adductor transfer technique nor the adductor sling technique restored failure load to that of the native condition. There was no significant difference in the subluxation or dislocation loads between the 2 MPFL reconstructions, but the adductor sling technique resulted in a higher load to failure. The adductor transfer technique frequently failed before subluxation or dislocation when compared with the adductor sling technique and the native MPFL. Clinical Relevance: The best technique for MPFL reconstruction in patients with open physes is a topic of debate. Given the long-term consequences of MPFL injury and potential for growth plate disturbance, it is important to study MPFL reconstruction techniques thoroughly, including in the laboratory setting.

4.
Arthrosc Sports Med Rehabil ; 6(1): 100824, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38169780

ABSTRACT

Purpose: To quantify the maximum load to fracture in patellae from which bone-patellar tendon-bone (BPTB) and bone-quadriceps tendon (BQT) autografts have been harvested for anterior cruciate ligament reconstruction in a cadaveric model. Methods: Forty-six fresh-frozen patellae were isolated and divided into the BPTB harvest and BQT harvest groups with matching based on donor age and sex. Computed tomography scans were obtained to calculate bone mineral density (BMD) and patellar height, width, and thickness. BPTB and BQT grafts were harvested from the inferior patella and superior patella, respectively, and then ramped to failure in a 3-point bend test configuration to simulate a postoperative fracture produced by a direct impact after a fall. The presence of fracture, fracture pattern, and maximum load to fracture were recorded. Donor demographic characteristics; patellar height, width, and thickness; and maximum load were compared by the Student t test. Pearson correlations were used to determine whether maximum load was affected by BMD or patellar morphology. The level of significance was set at P < .05. Results: Maximum load to fracture was not significantly different (P = .91) between the BPTB (5.0 ± 2.3 kN) and BQT (5.1 ± 2.6 kN) groups. Maximum load to fracture in the BPTB group did not correlate with BMD (P = .57) or patellar measurements (P = .57 for thickness, P = .43 for width, and P = .45 for height). Maximum load to fracture in the BQT group positively correlated with BMD and negatively correlated with patellar height. Maximum load to fracture in the BQT group did not correlate with patellar thickness or width. Fracture through the harvest site was observed in 87% of BPTB specimens and 78% of BQT specimens. Conclusions: The location of the BPTB or BQT autograft harvest site did not significantly affect patellar load to fracture in a cadaveric model. Clinical Relevance: It is important to understand patellar morphology and the effect of BPTB and BQT graft harvest-site locations on the biomechanical strength of the patella after anterior cruciate ligament reconstruction.

5.
J Bone Joint Surg Am ; 106(8): 735-745, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38194481

ABSTRACT

BACKGROUND: Multiple animal models have previously been utilized to investigate anterior fusion techniques, but a mouse model has yet to be developed. The purpose of this study was to develop murine anterior interbody and posterolateral fusion techniques. METHODS: Mice underwent either anterior interbody or posterolateral spinal fusion. A protocol was developed for both procedures, including a description of the relevant anatomy. Samples were subjected to micro-computed tomography to assess fusion success and underwent biomechanical testing with use of 4-point bending. Lastly, samples were fixed and embedded for histologic evaluation. RESULTS: Surgical techniques for anterior interbody and posterolateral fusion were developed. The fusion rate was 83.3% in the anterior interbody model and 100% in the posterolateral model. Compared with a control, the posterolateral model exhibited a greater elastic modulus. Histologic analysis demonstrated endochondral ossification between bridging segments, further confirming the fusion efficacy in both models. CONCLUSIONS: The murine anterior interbody and posterolateral fusion models are efficacious and provide an ideal platform for studying the molecular and cellular mechanisms mediating spinal fusion. CLINICAL RELEVANCE: Given the extensive genetic tools available in murine disease models, use of fusion models such as ours can enable determination of the underlying genetic pathways involved in spinal fusion.


Subject(s)
Lumbar Vertebrae , Spinal Fusion , Animals , Mice , Lumbar Vertebrae/surgery , Spinal Fusion/methods , X-Ray Microtomography , Osteogenesis , Disease Models, Animal
6.
JOR Spine ; 6(4): e1307, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38156058

ABSTRACT

Background: Tissue-engineered intervertebral disc (TE-IVD) constructs are an attractive therapy for treating degenerative disc disease and have previously been investigated in vivo in both large and small animal models. The mechanical environment of the spine is notably challenging, in part due to its complex anatomy, and implants may require additional mechanical support to avoid failure in the early stages of implantation. As such, the design of suitable support implants requires rigorous validation. Methods: We created a FE model to simulate the behavior of the IVD cages under compression specific to the anatomy of the porcine cervical spine, validated the FE model using an animal model, and predicted the effects of implant location and vertebral angle of the motion segment on implant behavior. Specifically, we tested anatomical positioning of the superior vertebra and placement of the implant. We analyzed corresponding stress and strain distributions. Results: Results demonstrated that the anatomical geometry of the porcine cervical spine led to concentrated stress and strain on the posterior side of the cage. This stress concentration was associated with the location of failure of the cages reported in vivo, despite superior mechanical properties of the implant. Furthermore, placement of the cage was found to have profound effects on migration, while the angle of the superior vertebra affected stress concentration of the cage. Conclusions: This model can be utilized both to inform surgical procedures and provide insight on future cage designs and can be adopted to models without the use of in vivo animal models.

7.
J Hand Surg Eur Vol ; 48(11): 1201-1206, 2023 12.
Article in English | MEDLINE | ID: mdl-37496471

ABSTRACT

The aim of the present cadaveric study was to assess resistance to first metacarpal subsidence of three techniques of suspensionplasty after trapeziectomy. In total, 18 forearms (mean age 60 years [range 20-89]) were used with six specimens per surgical technique: palmar oblique ligament reconstruction with tendon interposition (LRTI), abductor pollicis longus (APL) suspensionplasty, or suture suspensionplasty. There was no significant difference in mean trapezial space height after trapeziectomy and suspensionplasty compared to the preoperative trapezial height. However, after simulation of physiological lateral pinch, there was a significant (p < 0.05) difference in mean trapezial space height between the APL suspensionplasty and the suture suspensionplasty compared to the LRTI group. After axial loading, there was significantly greater metacarpal subsidence in the LRTI group compared to the APL and suture suspensionplasty groups but no statistically significant difference between the suture suspensionplasty and the APL suspensionplasty groups.Level of evidence: V.


Subject(s)
Carpometacarpal Joints , Plastic Surgery Procedures , Trapezium Bone , Humans , Young Adult , Adult , Middle Aged , Aged , Aged, 80 and over , Tendons/surgery , Trapezium Bone/surgery , Muscle, Skeletal/surgery , Thumb/surgery , Cadaver , Carpometacarpal Joints/surgery
8.
J Rural Health ; 39(4): 795-803, 2023 09.
Article in English | MEDLINE | ID: mdl-36775905

ABSTRACT

PURPOSE: Rural communities in the United States face unique challenges related to the opioid epidemic. This paper explores the substances and substance-related health problems that pose the greatest concern to rural communities that received funding to address the opioid epidemic and examines their reported capacity to address these challenges. METHODS: This paper analyzed data collected as part of quarterly progress reporting from multisector consortiums across 2 cohorts of grantees funded to reduce the morbidity and mortality of opioids. Consortium project directors ranked the top 3 issues in their community in each of the following categories: (1) drugs of concern; (2) drugs with the least capacity to address; (3) related problem areas of concern (eg, neonatal abstinence syndrome [NAS]); and (4) related problem areas with the least capacity to address. FINDINGS: Methamphetamines, fentanyl, and alcohol were the substances rated as most problematic in rural communities funded to address the opioid epidemic across all reporting periods. Over 40% of respondents ranked methamphetamine as a top concern and the substance they had the least capacity to address. This was nearly double the percentage of the next highest-ranked substance (fentanyl). Overdoses, NAS, and viral hepatitis constituted the top-ranking related concerns, with limited capacity to address them. CONCLUSIONS: Multiple drug and concomitant problems coalesced on rural communities during the opioid epidemic. Funding communities to address substance use disorders and related problems of concern, rather than targeting funding toward a specific type of drug, may result in better health outcomes throughout the entire community.


Subject(s)
Drug Overdose , Methamphetamine , Neonatal Abstinence Syndrome , Opioid-Related Disorders , Substance-Related Disorders , Infant, Newborn , Humans , United States/epidemiology , Opioid Epidemic , Rural Population , Substance-Related Disorders/epidemiology , Substance-Related Disorders/drug therapy , Drug Overdose/epidemiology , Analgesics, Opioid/adverse effects , Methamphetamine/therapeutic use , Fentanyl/therapeutic use , Neonatal Abstinence Syndrome/epidemiology , Opioid-Related Disorders/epidemiology , Opioid-Related Disorders/drug therapy
9.
Am J Sports Med ; 51(2): 453-460, 2023 02.
Article in English | MEDLINE | ID: mdl-36453729

ABSTRACT

BACKGROUND: Patellofemoral (PF) dysplasia is common in patients with recurrent patellar instability. Tibial tubercle osteotomy (TTO) is performed with goals of correcting patellar maltracking and redistributing contact forces across the PF joint. The biomechanical effects of TTO in the setting of PF dysplasia have not been quantified. PURPOSE/HYPOTHESIS: To quantify patellar contact mechanics and kinematics after TTO in the setting of PF dysplasia. We hypothesized that a simulated anteromedialization (AMZ) TTO would improve PF contact mechanics as compared with a pure medialization TTO. STUDY DESIGN: Controlled laboratory study. METHODS: PF dysplasia with Dejour type D classification was simulated in 7 cadaveric knees by replacing the native patellar and trochlear surfaces with synthetic polymeric patellar and trochlear implants. On each specimen, a flat TTO was fixed in 3 distinct positions simulating a pathologic lateralized tubercle (pathologic condition), a medialized tubercle (Elmslie Trillat), and an AMZ tubercle. The sum of forces acting on the medial and lateral patellar facet and patellar kinematics was computed for each knee for each condition from 0° to 70° of flexion at 10° increments. RESULTS: Relative to the pathologic condition, AMZ TTO decreased contact forces across the lateral facet (20°-50° and 70° of flexion). Relative to the pathologic condition, Elmslie Trillat TTO had no effect on contact forces on either compartment. Relative to the Elmslie Trillat TTO, the AMZ TTO had significantly decreased contact forces across the medial facet (at 40°, 60°, and 70° of flexion). No significant differences in joint kinematics occurred across any groups. CONCLUSION: Of all groups studied, AMZ TTO resulted in significantly decreased patellar contact forces in simulated dysplastic PF joints. AMZ may be considered in certain patients with PF dysplasia to avoid medial compartment PF chondral overload. CLINICAL RELEVANCE: PF dysplasia is common in patients with recurrent patellar instability who warrant surgical intervention to prevent subsequent recurrence. Numerous interventions to treat this condition, including various TTOs, have been proposed without a clear consensus. This cadaveric biomechanical study demonstrates that AMZ TTO resulted in more favorable PF contact mechanics than Elmslie Trillat TTO in a model representing PF dysplasia. AMZ TTO may be considered for patients in the setting of recurrent instability with PF dysplasia to avoid cartilage overload on the medial compartment of the PF joint.


Subject(s)
Joint Instability , Patellar Dislocation , Patellofemoral Joint , Humans , Patellofemoral Joint/surgery , Joint Instability/surgery , Knee Joint/surgery , Tibia/surgery , Osteotomy/methods , Cadaver , Patellar Dislocation/surgery
10.
Spine (Phila Pa 1976) ; 47(22): 1607-1612, 2022 Nov 15.
Article in English | MEDLINE | ID: mdl-35943233

ABSTRACT

STUDY DESIGN: Prospective randomized placebo controlled animal trial. OBJECTIVE: Determine the effect of daily subcutaneous abaloparatide injection on the intervertebral fusion rate in rabbits undergoing posterolateral fusion. STUDY OF BACKGROUND DATA: Despite the wide utilization of spine fusion, pseudarthrosis remains prevalent, and results in increased morbidity. Abaloparatide is a novel analog of parathyroid hormone-related peptide (1-34) and has shown efficacy in a rat posterolateral spine fusion model to increase fusion rates. The effect of abaloparatide on the fusion rate in a larger animal model remains unknown. MATERIALS AND METHODS: A total of 24 skeletally mature New Zealand White male rabbits underwent bilateral posterolateral spine fusion. Following surgery, the rabbits were randomized to receive either saline as control or abaloparatide subcutaneous injection daily. Specimens underwent manual assessment of fusion, radiographic analysis with both x-ray and high-resolution peripheral quantitative computed tomography, and biomechanical assessment. RESULTS: Rabbits that received abaloparatide had a 100% (10/10) fusion rate compared with 45% (5/11) for controls ( P <0.02) as assessed by manual palpation. Radiographic analysis determined an overall mean fusion score of 4.17±1.03 in the abaloparatide group versus 3.39±1.21 for controls ( P <0.001). The abaloparatide group also had a greater volume of bone formed with a bone volume of 1209±543 mm 3 compared with 551±152 mm 3 ( P <0.001) for controls. The abaloparatide group had significantly greater trabecular bone volume fraction and trabecular thickness and lower specific bone surface and connectivity density in the adjacent levels when compared with controls. Abaloparatide treatment did not impact trabecular number or separation. There were no differences in biomechanical testing in flexion, extension, or lateral bending ( P >0.05) between groups. CONCLUSIONS: Abaloparatide significantly increased the fusion rate in a rabbit posterolateral fusion model as assessed by manual palpation. In addition, there were marked increases in the radiographic evaluation of fusion.


Subject(s)
Parathyroid Hormone-Related Protein , Spinal Fusion , Animals , Male , Rabbits , Rats , Bone Transplantation/methods , Lumbar Vertebrae/surgery , Osteogenesis , Parathyroid Hormone-Related Protein/pharmacology , Parathyroid Hormone-Related Protein/therapeutic use , Prospective Studies , Spinal Fusion/methods
11.
Am J Sports Med ; 50(4): 1061-1065, 2022 03.
Article in English | MEDLINE | ID: mdl-35188812

ABSTRACT

BACKGROUND: Current reconstruction techniques do not re-create the distal ulnar collateral ligament (UCL) insertion. Reconstructing the distal extension of the anterior band ulnar footprint may increase elbow stability and resistance against valgus stress after UCL reconstruction (UCLR). PURPOSE/HYPOTHESIS: The purpose was to test a new technique for UCLR, a modification of the docking technique, aimed at re-creating the distal ulnar footprint anatomy of the anterior band. We hypothesize that this novel "anatomic" technique will provide greater resistance to valgus stress after UCLR when compared with the docking technique. STUDY DESIGN: Descriptive laboratory study. METHODS: Eighteen unpaired cadaveric arms were dissected to capsuloligamentous elbow structures and potted. With use of a servohydraulic load frame, 5 Ncm of valgus stress was placed on the UCL-intact elbows at 30°, 60°, 90°, and 120° of flexion. UCLR was performed on each elbow, randomized to either the docking technique or the anatomic technique. After UCLR, the elbow was again tested at 30°, 60°, 90°, and 120° of flexion. Ulnohumeral joint gapping was calculated using a 3-dimensional motion capture system applied to markers attached to the ulna and humerus. Differences in gapping among the intact state and docking and anatomic techniques were compared using a 2-way analysis of variance with significance set to P < .05. RESULTS: There was no significant difference in gapping between the anatomic and docking technique groups regardless of elbow flexion angle. All reconstructed groups showed increased gapping relative to intact, but all increases were below the clinically relevant level of 1 mm. CONCLUSION: Ulnohumeral joint gapping and resistance to valgus stress were similar between the anatomic technique and the docking technique for UCLR. CLINICAL RELEVANCE: This study provides evidence that the anatomic technique is a viable alternative UCLR method as compared with the docking technique in a cadaveric model.


Subject(s)
Collateral Ligament, Ulnar , Collateral Ligaments , Elbow Joint , Ulnar Collateral Ligament Reconstruction , Biomechanical Phenomena , Cadaver , Collateral Ligament, Ulnar/surgery , Collateral Ligaments/surgery , Elbow Joint/surgery , Humans , Ulnar Collateral Ligament Reconstruction/methods
12.
J Arthroplasty ; 37(8S): S964-S970, 2022 08.
Article in English | MEDLINE | ID: mdl-34392990

ABSTRACT

BACKGROUND: An extended trochanteric osteotomy (ETO) safely addresses femoral component removal during challenging revision total hip arthroplasty. However, no prior study has evaluated whether a difference in axial stability exists between ETO closure performed before (reconstitution) or after (scaffolding) canal preparation and stem impaction. We hypothesized that given the absence of clinical reports of outcome differences despite the wide use of both practices, no significant difference in the initial axial stability would exist between the 2 fixation techniques. METHODS: ETOs were performed and repaired using the reconstitution technique for the 6 right-sided femora and the scaffolding technique for the six left-sided femora. The 195-mm long, 3.5°-tapered splined titanium monobloc stems were impacted into 6 matched pairs of human fresh cadaveric femora. Three beaded cables were placed in a standardized fashion on each specimen, 1 for prophylaxis against osteotomy propagation during reaming/impaction and 2 to close the ETO. Stepwise axial loading was performed to 2600 N or until failure, which was defined as subsidence >5 mm or femoral/cable fracture. RESULTS: All specimens successfully resisted axial testing, with no stem in either ETO repair group subsiding >2 mm. The mean subsidence for the reconstitution group was 0.9 ± 0.4 mm, compared to 1.2 ± 0.5 mm for the scaffolding group (P = .2). CONCLUSION: In this cadaveric model with satisfactory proximal bone stock, no difference existed between the reconstitution and scaffolding ETO repair techniques, and both provide sufficient immediate axial stability in a simulated revision total hip arthroplasty setting under physiologic loads.


Subject(s)
Arthroplasty, Replacement, Hip , Femoral Fractures , Hip Prosthesis , Arthroplasty, Replacement, Hip/methods , Cadaver , Femoral Fractures/surgery , Femur/surgery , Humans , Osteotomy/methods , Prosthesis Design , Reoperation/methods , Retrospective Studies
13.
J Exp Orthop ; 8(1): 106, 2021 Nov 24.
Article in English | MEDLINE | ID: mdl-34817734

ABSTRACT

PURPOSE: The study was to determine the effect of locking hole inserts and their insertion torque on the fatigue life of a large fragment Locking Compression Plate (LCP) under bending forces. METHODS: Fatigue strength of the LCP was examined using cyclic three-point bend testing at 80% yield strength of the construct. Locking hole inserts were used in 2, 4, and 6-hole of a 12-hole plate to simulate three different working lengths. Within each working length, plates were tested without locking inserts serving as the control group. In the experimental groups, inserts were tightened to manufacturer recommendations (4 Nm) and using overtorque (8 Nm). RESULTS: Significantly fewer cycles to failure were observed in control groups versus the locking hole insert groups for all working lengths (2-hole: 4 Nm p = 0.003, 8 Nm p = 0.003; 4-hole: 4 Nm p = 0.02, 8 Nm p < 0.001; 6-hole: 4 Nm p = 0.004, 8 Nm p < 0.001). There was a statistically significant increase in fatigue strength when using overtorque in the 4-hole (p = 0.04) and 6-hole (p = 0.01) defect groups. This was not shown in the 2-hole defect group (p = 0.99). CONCLUSIONS: By placing locking inserts in the empty locking regions of Combi holes along the working length, the number of cycles to failure was increased. Tightening inserts to twice the recommended insertion torque further increased cycles to failure in longer working length models. A longer fatigue life has the potential to decease the incidence of plate failure especially in the setting of delayed union due to poor intrinsic healing capacity, fractures in the geriatric population, osteoporosis and periprosthetic fractures.

14.
Clin Orthop Relat Res ; 479(11): 2534-2546, 2021 11 01.
Article in English | MEDLINE | ID: mdl-34351312

ABSTRACT

BACKGROUND: Satisfactory management of bone defects is important to achieve an adequate reconstruction in revision TKA. Metaphyseal cones to address such defects in the proximal tibia are increasingly being used; however, the biomechanical superiority of cones over traditional techniques like fully cementing the implant into the defect has not yet been demonstrated. Moreover, although long stems are often used to bypass the defects, the biomechanical efficacy of long stems compared with short, cemented stems when combined with metaphyseal cones remains unclear. QUESTIONS/PURPOSES: We developed and validated finite-element models of nine cadaveric specimens to determine: (1) whether using cones for addressing moderate metaphyseal tibial defects in revision TKA reduces the risk of implant-cement debonding compared with cementing the implant alone, and (2) when using metaphyseal cones, whether long, uncemented stems (or diaphyseal-engaging stems) reduce the risk of implant-cement debonding and the cone-bone micromotions compared with short, cemented stems. METHODS: We divided nine cadaveric specimens (six male, three female, aged 57 to 73 years, BMI 24 to 47 kg/m2) with standardized tibial metaphyseal defects into three study groups: no cone with short (50-mm) cemented stem, in which the defect was filled with cement; cone with short (50-mm) cemented stem, in which a metaphyseal cone was implanted before cementing the implant; and cone with long, diaphyseal-engaging stem, which received a metaphyseal cone and the largest 150-mm stem that could fit the diaphyseal canal. The specimens were implanted and mechanically tested. Then, we developed and validated finite-element models to investigate the interaction between the implant and the bone during the demanding activity of stair ascent. We quantified the risk of implant debonding from the cement mantle by comparing the axial and shear stress at the cement-implant interface against an experimentally derived interface failure index criterion that has been previously used to quantify the risk of cement debonding. We considered the risk of debonding to be minimal when the failure index was below 10% of the strength of the interface (or failure index < 0.1). We also quantified the micromotion between the cone and the bone, as a guide to the likelihood of fixation by bone ingrowth. To this end, we assumed bone ingrowth for micromotion values below the most restrictive reported threshold for bone ingrowth, 20 µm. RESULTS: When using a short, 50-mm cemented stem and cement alone to fill the defect, 77% to 86% of the cement-implant interface had minimal risk of debonding (failure index < 0.1). When using a short, 50-mm cemented stem with a cone, 87% to 93% of the cement-implant interface had minimal debonding risk. When combining a cone with a long (150-mm) uncemented stem, 92% to 94% of the cement-implant interface had minimal debonding risk. The differences in cone-bone micromotion between short, cemented stems and long, uncemented stems were minimal and, for both configurations, most cones had micromotions below the most restrictive 20-µm threshold for ingrowth. However, the maximum micromotion between the cone and the bone was in general smaller when using a long, uncemented stem (13-23 µm) than when using a short, cemented stem (11-31 µm). CONCLUSION: Although the risk of debonding was low in all cases, metaphyseal cones help reduce the biomechanical burden on the implant-cement interface of short-stemmed implants in high-demand activities such as stair ascent. When using cones in revision TKA, long, diaphyseal-engaging stems did not provide a clear biomechanical advantage over short stems. Future studies should explore additional loading conditions, quantify the interspecimen variability, consider more critical defects, and evaluate the behavior of the reconstructive techniques under repetitive loads. CLINICAL RELEVANCE: Cones and stems are routinely used to address tibial defects in revision TKA. Despite our finding that metaphyseal cones may help reduce the risk of implant-cement debonding and allow using shorter stems with comparable biomechanical behavior to longer stems, either cones or cement alone can provide comparable results in contained metaphyseal defects. However, longer term clinical studies are needed to compare these techniques over time.


Subject(s)
Arthroplasty, Replacement, Knee/methods , Bone Cements , Bone-Implant Interface/physiopathology , Knee Prosthesis , Tibia/physiopathology , Aged , Biomechanical Phenomena , Cadaver , Diaphyses/physiopathology , Diaphyses/surgery , Female , Finite Element Analysis , Humans , Male , Middle Aged , Prosthesis Design , Reoperation , Tibia/surgery
15.
Am J Sports Med ; 49(12): 3344-3349, 2021 10.
Article in English | MEDLINE | ID: mdl-34415194

ABSTRACT

BACKGROUND: The distribution of contact forces across the dysplastic patellofemoral joint has not been adequately quantified because models cannot easily mimic the dysplasia of both the trochlea and the patella. Thus, the mechanical consequences of surgical treatments to correct dysplasia cannot be established. PURPOSE/HYPOTHESIS: The objective of this study was to quantify the contact mechanics and kinematics of normal, mild, and severely dysplastic patellofemoral joints using synthetic mimics of the articulating surfaces on cadavers. We tested the hypothesis that severely dysplastic joints would result in significantly increased patellofemoral contact forces and abnormal kinematics. STUDY DESIGN: Controlled laboratory study. METHOD: Patellofemoral dysplasia was simulated in 9 cadaveric knees by replacing the native patellar and trochlear surfaces with synthetic patellar and trochlear implants. For each knee, 3 synthetic surface geometries (normal, showing no signs of dysplasia; mild, exemplifying Dejour type A; and severe, exemplifying Dejour type B) were randomized for implantation and testing. Patellar kinematics and the sum of forces acting on the medial and lateral patellar facets were computed for each knee and for each condition at 10° increments from 0° to 70° of flexion. RESULTS: A pronounced lateral shift in the weighted center of contact of the lateral facet occurred for severely dysplastic knees from 20° to 70° of flexion. Compared with normal geometries, lateral patellar facet forces exhibited a significant increase only with mild dysplasia from 50° to 70° of flexion and with severe dysplasia at 70° of flexion. No measurable differences in medial patellar facet mechanics or joint kinematics occurred. CONCLUSION: Our hypothesis was rejected: Severely dysplastic joints did not result in significantly increased patellofemoral contact forces and abnormal kinematics in our cadaveric simulation. Rather, severe dysplasia resulted in a pronounced lateral shift in contact forces across the lateral patellar facet, while changes in kinematics and the magnitude of contact forces were not significant. CLINICAL RELEVANCE: Including dysplasia of both the patella and trochlea is required to fully capture the mechanics of this complex joint. The pronounced lateralization of contact force in severely dysplastic patellofemoral joints should be considered to avoid cartilage overload with surgical manipulation.


Subject(s)
Patellofemoral Joint , Cadaver , Humans , Patella , Pressure , Printing, Three-Dimensional
16.
J Hand Surg Am ; 46(12): 1079-1087, 2021 12.
Article in English | MEDLINE | ID: mdl-34325942

ABSTRACT

PURPOSE: To compare the kinematic effects of the dorsal fiber-splitting approach for scapholunate ligament repair to a dorsal "window" approach that spares all ligaments. METHODS: We randomized 24 fresh-frozen paired cadaveric forearms to either the dorsal fiber-splitting capsulotomy approach (FSC) or the dorsal window approach (window) following scapholunate interosseous ligament (SLIL) division. Loaded fluoroscopic radiographs were obtained after each of the 4 testing conditions following cyclic loading (200 cycles; 71 N): (1) intact SLIL, (2) SLIL-division, (3) surgical approach, and (4) closure. FSC specimens were randomly allocated to 2 subgroups for closure with either a suture anchor (n = 6) or a simple running suture closure (n = 6). Radiographic parameter measurements included the scapholunate gap, radiolunate angle, scapholunate angle, and dorsal scaphoid translation. RESULTS: Following the FSC, there were significant alterations in all radiographic parameters when compared with the intact and SLIL-division conditions. The window approach did not result in significant changes in any radiographic parameter. When compared to the window approach, all radiographic parameters of the FSC approach were significantly altered. Following closure with suture anchors in the FSC group, radiographic parameters improved, whereas with standard closure they failed to do so. Despite anchor closure, dorsal scaphoid translation, radiolunate angle, and scapholunate angle all remained elevated compared with scapholunate-divided wrists. CONCLUSIONS: The FSC produced significant changes in carpal posture under load, including scapholunate diastasis, dorsal intercalated segment instability, and dorsal scaphoid translation in SLIL-deficient wrists. The window approach preserved the critical dorsal ligament stabilizers and did not produce changes in carpal posture. CLINICAL RELEVANCE: The FSC may create iatrogenic changes in carpal posture that cannot be fully corrected with standard or anchor closure. The window approach does not alter carpal posture and should be considered when performing surgical procedures on the scaphoid or lunate.


Subject(s)
Joint Instability , Lunate Bone , Scaphoid Bone , Biomechanical Phenomena , Cadaver , Humans , Joint Instability/diagnostic imaging , Joint Instability/surgery , Ligaments, Articular/diagnostic imaging , Ligaments, Articular/surgery , Lunate Bone/diagnostic imaging , Lunate Bone/surgery , Scaphoid Bone/diagnostic imaging , Scaphoid Bone/surgery , Wrist , Wrist Joint/diagnostic imaging , Wrist Joint/surgery
17.
J Arthroplasty ; 36(9): 3333-3339, 2021 09.
Article in English | MEDLINE | ID: mdl-33958253

ABSTRACT

BACKGROUND: Titanium tapered stems (TTS) achieve fixation in the femoral diaphysis and are commonly used in revision total hip arthroplasty. The initial stability of a TTS is critical, but the minimum contact length needed and impact of implant-specific taper angles on axial stability are unknown. This biomechanical study was performed to better guide operative decision-making by addressing these clinical questions. METHODS: Two TTS with varying conical taper angles (2° spline taper vs 3.5° spline taper) were implanted in 9 right and left matched fresh human femora. The proximal femur was removed, and the remaining femoral diaphysis was prepared to allow for either a 2 cm (n = 6), 3 cm (n = 6), or 4 cm (n = 6) cortical contact length with each implanted stem. Stepwise axial load was then applied to a maximum of 2600N or until the femur fractured. Failure was defined as either subsidence >5 mm or femur fracture. RESULTS: All 6 femora with 2 cm of stem-cortical contact length failed axial testing, a significantly higher failure rate (P < .02) than the 4 out of 6 femora and all 6 femora that passed testing at 3 cm and 4 cm, respectively, which were not statistically different from each other (P = .12). Taper angle did not influence success rates, as each matched pair either succeeded or failed at the tested contact length. CONCLUSION: 4 cm of cortical contact length with a TTS demonstrates reliable initial axial stability, while 2 cm is insufficient regardless of taper angle. For 3 cm of cortical contact, successful initial fixation can be achieved in most cases with both taper angle designs.


Subject(s)
Arthroplasty, Replacement, Hip , Hip Prosthesis , Cadaver , Humans , Prosthesis Design , Titanium
18.
Quant Imaging Med Surg ; 11(4): 1234-1246, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33816163

ABSTRACT

BACKGROUND: Previous studies have utilized ultrashort echo (UTE) magnetic resonance imaging (MRI), and derived T2* maps, to evaluate structures with highly ordered collagen structures such as tendon. T2* maps may provide a noninvasive means to assess tendon damage and healing. This pilot study evaluated the longitudinal relationship of an induced mechanical strain on the patellar tendon with corresponding UTE T2* metrics, histologic and biomechanical evaluation at two post-operative time points. METHODS: A total of 27 patellar tendons in male Beagles were surgically subjected to stretching by a small diameter (SmD) or a large diameter (LgD) diameter rod to induce damage due to strain, and evaluated at 4- and 8-week intervals using quantitative MRI (qMRI), biomechanical testing, and histology. A separate set of 16 limbs were used as controls. RESULTS: The tendons experienced a 67% and 17% prolongation of short T2* values as compared to controls at 4 and 8 weeks post-operatively, respectively. Histologic analysis displayed a trend of increased collagen disruption at 4 weeks followed by presence of greater organization at 8 weeks. Biomechanical evaluation found a reduction of tendon modulus and failure strain at both time points, and an increase in cross-sectional area at 4 weeks as compared to controls. CONCLUSIONS: These findings display tendon healing in response to an imposed strain and present the utility of qMRI to evaluate longitudinal differences of patellar tendon T2* values in a model of induced subclinical tendon damage. The qMRI technique of UTE provides a means to non-invasively evaluate the healing process of a mechanically damaged tendon.

19.
Spine J ; 21(4): 698-707, 2021 04.
Article in English | MEDLINE | ID: mdl-33157322

ABSTRACT

BACKGROUND CONTEXT: Annular repair devices offer a solution to recurrent disc herniations by closing an annular defect and lowering the risk of reherniation. Given the significant risk of neurologic injury from device failure it is imperative that a reliable preclinical model exists to demonstrate a high load to failure for the disc repair devices. PURPOSE: To establish a preclinical model for disc herniation and demonstrate how changes in species, intervertebral disc height and Pfirrmann classification impacts failure load on an injured disc. We hypothesized that: (1) The force required for disc herniation would be variable across disc morphologies and species, and (2) for human discs the force to herniation would inversely correlate with the degree of disc degeneration. STUDY DESIGN: Animal and human cadaveric biomechanical model of disc herniation. METHODS: We tested calf lumbar spines, bovine tail segments and human lumbar spines. We first divided individual lumbar or tail segments to include the vertebral bodies and disc. We then hydrated the specimens by placing them in a saline bath overnight. A magnetic resonance images were acquired from human specimens and a Pfirrmann classification was made. A stab incision measuring 25% of the diameter of the disc was then done to each specimen along the posterior intervertebral disc space. Each specimen was placed in custom test fixtures on a servo-hydraulic test frame (MTS, Eden Prarie, MN) such that the superior body was attached to a 10,000 lb load cell and the inferior body was supported on the piston. A compressive ramping load was placed on the specimen in load control at 4 MPa/sec stopping at 75% of the disc height. Load was recorded throughout the test and failure load calculated. Once the test was completed each specimen was sliced through the center of the disc and photos were taken of the cut surface. RESULTS: Fifteen each of calf, human, and bovine tail segments were tested. The failure load varied significantly between specimens (p<.001) with human specimens having the highest average failure load (8154±2049 N). Disc height was higher for lumbar/bovine tail segments as compared to calf specimens (p<.001) with bovine tails having the highest disc height (7.1±1.7 mm). Similarly, human lumbar discs had a cross sectional area that was greater than both bovine tail/calf lumbar spines (p<.001). There was no correlation between disc height and failure load within each individual species (p>.05). Cross sectional area and failure load did not correlate with failure load for human lumbar spine and bovine tails (p>.05) but did correlate with calf spine (r=0.53, p=.04). There was a statistically significant inverse correlation between disc height and Pfirrmann classification for human lumbar spines (r=-0.84, p<.001). There was also a statistically significant inverse relationship between Pfirrmann classification and failure load (r=-0.58, p=.02). CONCLUSIONS: We have established a model for disc herniation and have shown how results of this model vary between species, disc morphology, and Pfirrmann classification. Both hypotheses were accepted: The force required for disc herniation was variable across species, and the force to herniation for human spines was inversely correlated with the degree of disc degeneration. We recommend that models using human intervertebral discs should include data on Pfirrmann classification, while biomechanical models using calf spines should report cross sectional area. Failure loads do not vary based on dimensions for bovine tails. CLINICAL SIGNIFICANCE: Our analysis of models for disc herniation will allow for quicker, reliable comparisons of failure forces required to induce a disc herniation. Future work with these models may facilitate rapid testing of devices to repair a torn/ruptured annulus.


Subject(s)
Intervertebral Disc Degeneration , Intervertebral Disc Displacement , Intervertebral Disc , Animals , Cattle , Humans , Intervertebral Disc Degeneration/diagnostic imaging , Intervertebral Disc Displacement/diagnostic imaging , Lumbar Vertebrae/diagnostic imaging , Lumbosacral Region
20.
Am J Sports Med ; 48(14): 3557-3565, 2020 12.
Article in English | MEDLINE | ID: mdl-33135907

ABSTRACT

BACKGROUND: Adult medial patellofemoral ligament (MPFL) reconstruction techniques are not appropriate for the skeletally immature patient given the proximity of the distal femoral physis. Biomechanical consequences of reconstructions aimed at avoiding the physis have not been adequately studied. PURPOSE: To quantify the biomechanical effects of MPFL reconstruction techniques intended for skeletally immature patients. STUDY DESIGN: Controlled laboratory study. METHODS: Four MPFL reconstruction techniques were evaluated using a computationally augmented cadaveric model: (1) Schoettle point: adult-type reconstruction; (2) epiphyseal: socket distal to the femoral physis; (3) adductor sling: graft wrapped around the adductor tendon; (4) adductor transfer: adductor tendon transferred to patella. A custom testing frame was used to cycle 8 knees for each technique from 10° to 110° of flexion. Patellofemoral kinematics were recorded using a motion camera system, contact stresses were recorded using Tekscan pressure sensors, and MPFL length was computed using an inverse kinematics computational model. Change in MPFL length, patellar facet forces, and patellar kinematics were compared using generalized estimating equation modeling. RESULTS: Schoettle point reconstruction was the most isometric, demonstrating isometry from 10° to 100°. The epiphyseal technique was isometric until 60°, after which the graft loosened with increasing flexion. The adductor sling and adductor transfer techniques were significantly more anisometric from 40° to 110°. Both grafts tightened with knee flexion and resulted in significantly more lateral patellar tilt versus the intact state in early flexion and significantly higher contact forces on the medial facet versus the epiphyseal technique in late flexion. CONCLUSION: In this cadaveric simulation, the epiphyseal technique allowed for a more isometric ligament until midflexion, when the patella engaged within the trochlear groove. The adductor sling and adductor transfer grafts became tighter in flexion, resulting in potential loss of motion, pain, graft stretching, and failure. Marginal between-condition differences in patellofemoral contact mechanics and patellar kinematics were observed in late flexion. CLINICAL RELEVANCE: In the skeletally immature patient, using an epiphyseal type MPFL reconstruction with the femoral attachment site distal to the physis results in a more isometric graft compared with techniques with attachment sites proximal to the physis.


Subject(s)
Ligaments, Articular/surgery , Models, Anatomic , Patellofemoral Joint , Adult , Aged , Cadaver , Humans , Middle Aged , Patella , Patellofemoral Joint/surgery , Plastic Surgery Procedures , Tendons
SELECTION OF CITATIONS
SEARCH DETAIL
...