Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Environ Qual ; 49(3): 754-761, 2020 May.
Article in English | MEDLINE | ID: mdl-33016404

ABSTRACT

Land application of manure introduces gastrointestinal microbes into the environment, including bacteria carrying antibiotic resistance genes (ARGs). Measuring soil ARGs is important for active stewardship efforts to minimize gene flow from agricultural production systems; however, the variety of sampling protocols and target genes makes it difficult to compare ARG results between studies. We used polymerase chain reaction (PCR) methods to characterize and/or quantify 27 ARG targets in soils from 20 replicate, long-term no-till plots, before and after swine manure application and simulated rainfall and runoff. All samples were negative for the 10 b-lactamase genes assayed. For tetracycline resistance, only source manure and post-application soil samples were positive. The mean number of macrolide, sulfonamide, and integrase genes increased in post-application soils when compared with source manure, but at plot level only, 1/20, 5/20, and 11/20 plots post-application showed an increase in erm(B), sulI, and intI1, respectively. Results confirmed the potential for temporary blooms of ARGs after manure application, likely linked to soil moisture levels. Results highlight uneven distribution of ARG targets, even within the same soil type and at the farm plot level. This heterogeneity presents a challenge for separating effects of manure application from background ARG noise under field conditions and needs to be considered when designing studies to evaluate the impact of best management practices to reduce ARG or for surveillance. We propose expressing normalized quantitative PCR (qPCR) ARG values as the number of ARG targets per 100,000 16S ribosomal RNA genes for ease of interpretation and to align with incidence rate data.


Subject(s)
Manure , Soil , Animals , Anti-Bacterial Agents/pharmacology , Crops, Agricultural , Drug Resistance, Microbial/genetics , Soil Microbiology , Swine
2.
Can J Respir Ther ; 55: 40-46, 2019.
Article in English | MEDLINE | ID: mdl-31297448

ABSTRACT

High-frequency oscillatory ventilation (HFOV) is a lung-protective strategy that can be utilized in the full spectrum of patient populations ranging from neonatal to adults with acute lung injury. HFOV is often utilized as a rescue strategy when conventional mechanical ventilation (CV) has failed. HFOV uses low tidal volumes and constant mean airway pressures in conjunction with high respiratory rates to provide beneficial effects on oxygenation and ventilation, while eliminating the traumatic "inflate-deflate" cycle imposed by CV. Although statistical evidence supporting HFOV is particularly low, potential benefits for its application in many clinical manifestations still remain. High-frequency oscillation is a safe and effective rescue mode of ventilation for the treatment of acute respiratory distress syndrome (ARDS). All patients who have ventilator-induced lung injury (VILI) or are at risk of developing VILI or ARDS would be suitable candidates for HFOV, especially those who have failed conventional mechanical ventilation. This narrative aims to provide a review of HFOV vis-à-vis its indications, contraindications, hazards, parameters to monitoring, patient selection, clinical goals, mechanisms of action, controls for optimizing ventilation and oxygenation, clinical application in ARDS, and a comparison with other modes of mechanical ventilation.

3.
PLoS One ; 14(5): e0217047, 2019.
Article in English | MEDLINE | ID: mdl-31107897

ABSTRACT

Phytoplankton are the oceans' principal source of polyunsaturated fatty acids that support the growth and reproduction of consumers such as copepods. Previous studies have demonstrated ocean acidification (OA) can change the availability of polyunsaturated fatty acids to consumer diets which may affect consumer reproduction. Two laboratory experiments were conducted to examine the effects of feeding high-pCO2-reared phytoplankton on copepod egg production, hatching success, and naupliar survival. Marine phytoplankton Rhodomonas salina, Skeletonema marinoi, Prorocentrum micans, and Isochrysis galbana were exponentially grown in semi-continuous cultures at present (control) (400 ppm CO2, pH~8.1) and future (1,000 ppm CO2, pH~7.8) conditions and provided to Acartia tonsa copepods over 4 consecutive days as either nitrogen-limited (Exp. I) or nitrogen-depleted (Exp. II) mixed assemblage of phytoplankton. The composition of FAs in the phytoplankton diet was affected by pCO2 concentration and nitrogen deficiency; the ratio of essential fatty acids to total polyunsaturated fatty acids decreased in phytoplankton grown under high pCO2 and the mass of total fatty acids increased under nitrogen depletion. Additionally, total concentrations of essential fatty acids and polyunsaturated fatty acids in the diet mixtures were less under the high-pCO2 compared to the control-pCO2 treatments. Median egg production, hatching success, and naupliar survival were 48-52%, 4-87%, and 9-100% lower, respectively, in females fed high-pCO2 than females fed low-pCO2 phytoplankton, but this decrease in reproductive success was less severe when fed N-depleted, but fatty acid-rich cells. This study demonstrates that the effects of OA on the nutritional quality of phytoplankton (i.e., their cellular fatty acid composition and quota) were modified by the level of nitrogen deficiency and the resulting negative reproductive response of marine primary consumers.


Subject(s)
Copepoda/physiology , Oceans and Seas , Phytoplankton/physiology , Seawater/chemistry , Animal Feed , Animals , Carbon Dioxide/chemistry , Diatoms/physiology , Fatty Acids, Unsaturated/chemistry , Female , Hydrogen-Ion Concentration , Male , Nitrogen/chemistry , Nutritive Value , Reproduction
SELECTION OF CITATIONS
SEARCH DETAIL
...