Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
1.
J Immunother Cancer ; 11(11)2023 11.
Article in English | MEDLINE | ID: mdl-37935564

ABSTRACT

BACKGROUND: Papillary renal cell carcinoma (pRCC) is the most common non-clear cell RCC, and associated with poor outcomes in the metastatic setting. In this study, we aimed to comprehensively evaluate the immune tumor microenvironment (TME), largely unknown, of patients with metastatic pRCC and identify potential therapeutic targets. METHODS: We performed quantitative gene expression analysis of TME using Microenvironment Cell Populations-counter (MCP-counter) methodology, on two independent cohorts of localized pRCC (n=271 and n=98). We then characterized the TME, using immunohistochemistry (n=38) and RNA-sequencing (RNA-seq) (n=30) on metastatic pRCC from the prospective AXIPAP trial cohort. RESULTS: Unsupervised clustering identified two "TME subtypes", in each of the cohorts: the "immune-enriched" and the "immune-low". Within AXIPAP trial cohort, the "immune-enriched" cluster was significantly associated with a worse prognosis according to the median overall survival to 8 months (95% CI, 6 to 29) versus 37 months (95% CI, 20 to NA, p=0.001). The two immune signatures, Teff and JAVELIN Renal 101 Immuno signature, predictive of response to immune checkpoint inhibitors (CPI) in clear cell RCC, were significantly higher in the "immune-enriched" group (adjusted p<0.05). Finally, five differentially overexpressed genes were identified, corresponding mainly to B lymphocyte populations. CONCLUSION: For the first time, using RNA-seq and immunohistochemistry, we have highlighted a specific immune TME subtype of metastatic pRCC, significantly more infiltrated with T and B immune population. This "immune-enriched" group appears to have a worse prognosis and could have a potential predictive value for response to immunotherapy, justifying the confirmation of these results in a cohort of metastatic pRCC treated with CPI and in combination with targeted therapies. TRIAL REGISTRATION NUMBER: NCT02489695.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , Humans , Carcinoma, Renal Cell/drug therapy , Carcinoma, Renal Cell/genetics , Kidney Neoplasms/drug therapy , Kidney Neoplasms/genetics , Prospective Studies , Tumor Microenvironment , Gene Expression Profiling/methods
2.
Immunity ; 56(10): 2254-2269, 2023 Oct 10.
Article in English | MEDLINE | ID: mdl-37699391

ABSTRACT

The generation of anti-tumor immunity in the draining lymph nodes is known as the cancer immunity cycle. Accumulating evidence supports the occurrence of such a cycle at tumor sites in the context of chronic inflammation. Here, we review the role of tertiary lymphoid structures (TLS) in the generation of T and B cell immunities, focusing on the impact of B cells that undergo full maturation, resulting in the generation of plasma cells (PCs) producing high-affinity IgG and IgA antibodies. In this context, we propose that antibodies binding to tumor cells induce macrophage or natural killer (NK)-cell-dependent apoptosis. Subsequently, released antigen-antibody complexes are internalized and processed by dendritic cells (DCs), amplifying antigen presentation to T cells. Immune complexes may also be fixed by follicular DCs (FDCs) in TLS, thereby increasing memory B cell responses. This amplification loop creates an intra-tumoral immunity cycle, capable of increasing sensitivity of tumors to immunotherapy even in cancers with low mutational burden.

3.
Cancer Immunol Res ; 11(4): 530-545, 2023 04 03.
Article in English | MEDLINE | ID: mdl-36883368

ABSTRACT

One billion people worldwide get flu every year, including patients with non-small cell lung cancer (NSCLC). However, the impact of acute influenza A virus (IAV) infection on the composition of the tumor microenvironment (TME) and the clinical outcome of patients with NSCLC is largely unknown. We set out to understand how IAV load impacts cancer growth and modifies cellular and molecular players in the TME. Herein, we report that IAV can infect both tumor and immune cells, resulting in a long-term protumoral effect in tumor-bearing mice. Mechanistically, IAV impaired tumor-specific T-cell responses, led to the exhaustion of memory CD8+ T cells and induced PD-L1 expression on tumor cells. IAV infection modulated the transcriptomic profile of the TME, fine-tuning it toward immunosuppression, carcinogenesis, and lipid and drug metabolism. Consistent with these data, the transcriptional module induced by IAV infection in tumor cells in tumor-bearing mice was also found in human patients with lung adenocarcinoma and correlated with poor overall survival. In conclusion, we found that IAV infection worsened lung tumor progression by reprogramming the TME toward a more aggressive state.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Influenza A virus , Influenza, Human , Lung Neoplasms , Orthomyxoviridae Infections , Humans , Animals , Mice , Lung Neoplasms/pathology , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Tumor Microenvironment , CD8-Positive T-Lymphocytes , Lung , Orthomyxoviridae Infections/pathology
6.
J Immunother Cancer ; 10(5)2022 05.
Article in English | MEDLINE | ID: mdl-35640928

ABSTRACT

BACKGROUND: The phase II NIVOREN GETUG-AFU 26 study reported safety and efficacy of nivolumab in patients with metastatic clear cell renal cell carcinoma (m-ccRCC) in a 'real-world setting'. We conducted a translational-research program to determine whether specific circulating immune-cell populations and/or soluble factors at baseline were predictive of clinical outcomes in patients with m-ccRCC treated with nivolumab within the NIVOREN study. METHODS: Absolute numbers of 106 circulating immune-cell populations were prospectively analyzed in patients treated at a single institution within the NIVOREN trial with available fresh-whole-blood, using dry formulation panels for multicolor flow cytometry. In addition, a panel of 14 predefined soluble factors was quantified for each baseline plasma sample using the Meso-Scale-Discovery immunoassay. The remaining patients with available plasma sample were used as a validation cohort for the soluble factor quantification analysis. Tumor immune microenvironment characterization of all patients included in the translational program of the study was available. The association of blood and tissue-based biomarkers, with overall survival (OS), progression-free survival (PFS) and response was analyzed. RESULTS: Among the 44 patients, baseline unswitched memory B cells (NSwM B cells) were enriched in responders (p=0.006) and associated with improved OS (HR=0.08, p=0.002) and PFS (HR=0.54, p=0.048). Responders were enriched in circulating T follicular helper (Tfh) (p=0.027) and tertiary lymphoid structures (TLS) (p=0.043). Circulating NSwM B cells positively correlated with Tfh (r=0.70, p<0.001). Circulating NSwM B cells correlated positively with TLS and CD20 +B cells at the tumor center (r=0.59, p=0.044, and r=0.52, p=0.033) and inversely correlated with BCA-1/CXCL13 and BAFF (r=-0.55 and r=-0.42, p<0.001). Tfh cells also inversely correlated with BCA-1/CXCL13 (r=-0.61, p<0.001). IL-6, BCA-1/CXCL13 and BAFF significantly associated with worse OS in the discovery (n=40) and validation cohorts (n=313). CONCLUSION: We report the first fresh blood immune-monitoring of patients with m-ccRCC treated with nivolumab. Baseline blood concentration of NSwM B cells was associated to response, PFS and OS in patients with m-ccRCC treated with nivolumab. BCA-1/CXCL13 and BAFF, inversely correlated to NSwM B cells, were both associated with worse OS in discovery and validation cohorts. Our data confirms a role for B cell subsets in the response to immune checkpoint blockade therapy in patients with m-ccRCC. Further studies are needed to confirm these findings.


Subject(s)
Antineoplastic Agents, Immunological , Carcinoma, Renal Cell , Kidney Neoplasms , Antineoplastic Agents, Immunological/therapeutic use , Carcinoma, Renal Cell/pathology , Humans , Kidney Neoplasms/pathology , Memory B Cells , Nivolumab/therapeutic use , Tumor Microenvironment
7.
Nat Rev Clin Oncol ; 19(7): 441-457, 2022 07.
Article in English | MEDLINE | ID: mdl-35365796

ABSTRACT

B cells are a major component of the tumour microenvironment, where they are predominantly associated with tertiary lymphoid structures (TLS). In germinal centres within mature TLS, B cell clones are selectively activated and amplified, and undergo antibody class switching and somatic hypermutation. Subsequently, these B cell clones differentiate into plasma cells that can produce IgG or IgA antibodies targeting tumour-associated antigens. In tumours without mature TLS, B cells are either scarce or differentiate into regulatory cells that produce immunosuppressive cytokines. Indeed, different tumours vary considerably in their TLS and B cell content. Notably, tumours with mature TLS, a high density of B cells and plasma cells, as well as the presence of antibodies to tumour-associated antigens are typically associated with favourable clinical outcomes and responses to immunotherapy compared with those lacking these characteristics. However, polyclonal B cell activation can also result in the formation of immune complexes that trigger the production of pro-inflammatory cytokines by macrophages and neutrophils. In complement-rich tumours, IgG antibodies can also activate the complement cascade, resulting in the production of anaphylatoxins that sustain tumour-promoting inflammation and angiogenesis. Herein, we review the phenotypic heterogeneity of intratumoural B cells and the importance of TLS in their generation as well as the potential of B cells and TLS as prognostic and predictive biomarkers. We also discuss novel therapeutic approaches that are being explored with the aim of increasing mature TLS formation, B cell differentiation and anti-tumour antibody production within tumours.


Subject(s)
Neoplasms , Tertiary Lymphoid Structures , Antigens, Neoplasm , Cytokines , Humans , Immunoglobulin G , Neoplasms/pathology , Tertiary Lymphoid Structures/pathology , Tumor Microenvironment
8.
Lancet Oncol ; 23(5): 612-624, 2022 05.
Article in English | MEDLINE | ID: mdl-35390339

ABSTRACT

BACKGROUND: We previously reported a 35-gene expression classifier identifying four clear-cell renal cell carcinoma groups (ccrcc1 to ccrcc4) with different tumour microenvironments and sensitivities to sunitinib in metastatic clear-cell renal cell carcinoma. Efficacy profiles might differ with nivolumab and nivolumab-ipilimumab. We therefore aimed to evaluate treatment efficacy and tolerability of nivolumab, nivolumab-ipilimumab, and VEGFR-tyrosine kinase inhibitors (VEGFR-TKIs) in patients according to tumour molecular groups. METHODS: This biomarker-driven, open-label, non-comparative, randomised, phase 2 trial included patients from 15 university hospitals or expert cancer centres in France. Eligible patients were aged 18 years or older, had an Eastern Cooperative Oncology Group performance status of 0-2, and had previously untreated metastatic clear-cell renal cell carcinoma. Patients were randomly assigned (1:1) using permuted blocks of varying sizes to receive either nivolumab or nivolumab-ipilimumab (ccrcc1 and ccrcc4 groups), or either a VEGFR-TKI or nivolumab-ipilimumab (ccrcc2 and ccrcc3 groups). Patients assigned to nivolumab-ipilimumab received intravenous nivolumab 3 mg/kg plus ipilimumab 1 mg/kg every 3 weeks for four doses followed by intravenous nivolumab 240 mg every 2 weeks. Patients assigned to nivolumab received intravenous nivolumab 240 mg every 2 weeks. Patients assigned to VEGFR-TKIs received oral sunitinib (50 mg/day for 4 weeks every 6 weeks) or oral pazopanib (800 mg daily continuously). The primary endpoint was the objective response rate by investigator assessment per Response Evaluation Criteria in Solid Tumors version 1.1. The primary endpoint and safety were assessed in the population who received at least one dose of study drug. This trial is registered with ClinicalTrials.gov, NCT02960906, and with the EU Clinical Trials Register, EudraCT 2016-003099-28, and is closed to enrolment. FINDINGS: Between June 28, 2017, and July 18, 2019, 303 patients were screened for eligibility, 202 of whom were randomly assigned to treatment (61 to nivolumab, 101 to nivolumab-ipilimumab, 40 to a VEGFR-TKI). In the nivolumab group, two patients were excluded due to a serious adverse event before the first study dose and one patient was excluded from analyses due to incorrect diagnosis. Median follow-up was 18·0 months (IQR 17·6-18·4). In the ccrcc1 group, objective responses were seen in 12 (29%; 95% CI 16-45) of 42 patients with nivolumab and 16 (39%; 24-55) of 41 patients with nivolumab-ipilimumab (odds ratio [OR] 0·63 [95% CI 0·25-1·56]). In the ccrcc4 group, objective responses were seen in seven (44%; 95% CI 20-70) of 16 patients with nivolumab and nine (50% 26-74) of 18 patients with nivolumab-ipilimumab (OR 0·78 [95% CI 0·20-3·01]). In the ccrcc2 group, objective responses were seen in 18 (50%; 95% CI 33-67) of 36 patients with a VEGFR-TKI and 19 (51%; 34-68) of 37 patients with nivolumab-ipilimumab (OR 0·95 [95% CI 0·38-2·37]). In the ccrcc3 group, no objective responses were seen in the four patients who received a VEGFR-TKI, and in one (20%; 95% CI 1-72) of five patients who received nivolumab-ipilimumab. The most common treatment-related grade 3-4 adverse events were hepatic failure and lipase increase (two [3%] of 58 for both) with nivolumab, lipase increase and hepatobiliary disorders (six [6%] of 101 for both) with nivolumab-ipilimumab, and hypertension (six [15%] of 40) with a VEGFR-TKI. Serious treatment-related adverse events occurred in two (3%) patients in the nivolumab group, 38 (38%) in the nivolumab-ipilimumab group, and ten (25%) patients in the VEGFR-TKI group. Three deaths were treatment-related: one due to fulminant hepatitis with nivolumab-ipilimumab, one death from heart failure with sunitinib, and one due to thrombotic microangiopathy with sunitinib. INTERPRETATION: We demonstrate the feasibility and positive effect of a prospective patient selection based on tumour molecular phenotype to choose the most efficacious treatment between nivolumab with or without ipilimumab and a VEGFR-TKI in the first-line treatment of metastatic clear-cell renal cell carcinoma. FUNDING: Bristol Myers Squibb, ARTIC.


Subject(s)
Carcinoma, Renal Cell , Nivolumab , Angiogenesis Inhibitors/adverse effects , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Biomarkers , Carcinoma, Renal Cell/drug therapy , Female , Humans , Ipilimumab , Lipase , Male , Neoplasm Staging , Nivolumab/adverse effects , Prospective Studies , Protein Kinase Inhibitors/adverse effects , Sunitinib , Tumor Microenvironment
9.
Immunity ; 55(3): 527-541.e5, 2022 03 08.
Article in English | MEDLINE | ID: mdl-35231421

ABSTRACT

The presence of intratumoral tertiary lymphoid structures (TLS) is associated with positive clinical outcomes and responses to immunotherapy in cancer. Here, we used spatial transcriptomics to examine the nature of B cell responses within TLS in renal cell carcinoma (RCC). B cells were enriched in TLS, and therein, we could identify all B cell maturation stages toward plasma cell (PC) formation. B cell repertoire analysis revealed clonal diversification, selection, expansion in TLS, and the presence of fully mature clonotypes at distance. In TLS+ tumors, IgG- and IgA-producing PCs disseminated into the tumor beds along fibroblastic tracks. TLS+ tumors exhibited high frequencies of IgG-producing PCs and IgG-stained and apoptotic malignant cells, suggestive of anti-tumor effector activity. Therapeutic responses and progression-free survival correlated with IgG-stained tumor cells in RCC patients treated with immune checkpoint inhibitors. Thus, intratumoral TLS sustains B cell maturation and antibody production that is associated with response to immunotherapy, potentially via direct anti-tumor effects.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , Tertiary Lymphoid Structures , Carcinoma, Renal Cell/therapy , Female , Humans , Immunoglobulin G , Kidney Neoplasms/therapy , Male , Plasma Cells , Tertiary Lymphoid Structures/pathology , Tumor Microenvironment
10.
Clin Cancer Res ; 27(24): 6749-6760, 2021 12 15.
Article in English | MEDLINE | ID: mdl-34407968

ABSTRACT

PURPOSE: A minority of patients currently respond to single-agent immune-checkpoint blockade (ICB), and strategies to increase response rates are urgently needed. AXL is a receptor tyrosine kinase commonly associated with drug resistance and poor prognosis in many cancer types, including in clear-cell renal cell carcinoma (ccRCC). Recent experimental cues in breast, pancreatic, and lung cancer models have linked AXL with immune suppression and resistance to antitumor immunity. However, its role in intrinsic and acquired resistance to ICB remains largely unexplored. EXPERIMENTAL DESIGN: In this study, tumoral expression of AXL was examined in ccRCC specimens from 316 patients who were metastatic receiving the PD-1 inhibitor nivolumab in the GETUG AFU 26 NIVOREN trial after failure of antiangiogenic therapy. We assessed associations between AXL and patient outcomes following PD-1 blockade, as well as the relationship with various markers, including PD-L1; VEGFA; the immune markers CD3, CD8, CD163, and CD20; and the mutational status of the tumor-suppressor gene von Hippel-Lindau (VHL). RESULTS: Our results show that high AXL-expression level in tumor cells is associated with lower response rates and a trend to shorter progression-free survival following anti-PD-1 treatment. AXL expression was strongly associated with tumor-PD-L1 expression, especially in tumors with VHL inactivation. Moreover, patients with tumors displaying concomitant PD-L1 expression and high AXL expression had the worst overall survival. CONCLUSIONS: Our findings propose AXL as candidate factor of resistance to PD-1 blockade, and provide compelling support for screening both AXL and PD-L1 expression in the management of advanced ccRCC.See related commentary by Hahn et al., p. 6619.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , B7-H1 Antigen/genetics , B7-H1 Antigen/metabolism , Carcinoma, Renal Cell/drug therapy , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/pathology , Humans , Kidney Neoplasms/drug therapy , Kidney Neoplasms/genetics , Kidney Neoplasms/pathology , Nivolumab/therapeutic use , Programmed Cell Death 1 Receptor
11.
Front Immunol ; 12: 701273, 2021.
Article in English | MEDLINE | ID: mdl-34322128

ABSTRACT

SARS-CoV-2 infection leads to a highly variable clinical evolution, ranging from asymptomatic to severe disease with acute respiratory distress syndrome, requiring intensive care units (ICU) admission. The optimal management of hospitalized patients has become a worldwide concern and identification of immune biomarkers predictive of the clinical outcome for hospitalized patients remains a major challenge. Immunophenotyping and transcriptomic analysis of hospitalized COVID-19 patients at admission allow identifying the two categories of patients. Inflammation, high neutrophil activation, dysfunctional monocytic response and a strongly impaired adaptive immune response was observed in patients who will experience the more severe form of the disease. This observation was validated in an independent cohort of patients. Using in silico analysis on drug signature database, we identify differential therapeutics that specifically correspond to each group of patients. From this signature, we propose a score-the SARS-Score-composed of easily quantifiable biomarkers, to classify hospitalized patients upon arrival to adapt treatment according to their immune profile.


Subject(s)
COVID-19/immunology , SARS-CoV-2/physiology , Adaptive Immunity/genetics , Adult , Aged , Antiviral Agents/therapeutic use , Biomarkers , COVID-19/therapy , Cohort Studies , Female , Hospitalization , Humans , Inflammation/genetics , Male , Middle Aged , Precision Medicine , Prospective Studies , Severity of Illness Index , Transcriptome
12.
Front Immunol ; 12: 680435, 2021.
Article in English | MEDLINE | ID: mdl-34093582

ABSTRACT

Intratumoral hypoxia is a widely established element of the pancreatic tumor microenvironment (TME) promoting immune escape, tumor invasion, and progression, while contributing to treatment resistance and poor survival. Despite this critical role, hypoxia is underrepresented in molecular signatures of pancreatic ductal adenocarcinoma (PDA) and concurrent investigations into the hypoxia-immune status are lacking. In this work a literature-based approach was applied to derive an eight-gene hypoxia signature that was validated in fourteen cancer cell lines and in a cohort of PDA. The eight-gene hypoxia signature was significantly associated with overall survival in two distinct PDA datasets and showed independent prognostic value in multivariate analysis. Comparative analysis of tumors according to their hypoxia score (high versus low) determined that tumors with high hypoxia were significantly less enriched in cytotoxic T-cells, and cytolytic activity. In addition, they had lower expression of cytokines and tumor inflammatory markers, pointing to the signature's ability to discern an immune "cold", hypoxic TME. Combining the signature with an immune metric highlighted a worse survival probability in patients with high hypoxia and low immune reactivity, indicating that this approach could further refine survival estimates. Hypoxia as determined by our signature, was significantly associated with certain immune checkpoint inhibitors (ICI) biomarkers, suggesting that the signature reflects an aspect of the TME that is worth pursuing in future clinical trials. This is the first work of its kind in PDA, and our findings on the hypoxia-immune tumor contexture are not only relevant for ICI but could also guide combinatorial hypoxia-mediated therapeutic strategies in this cancer type.


Subject(s)
Gene Expression Regulation, Neoplastic , Hypoxia/genetics , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/mortality , Transcriptome , Tumor Microenvironment/genetics , Tumor Microenvironment/immunology , Biomarkers, Tumor , Computational Biology/methods , Databases, Genetic , Female , Gene Expression Profiling , Humans , Hypoxia/immunology , Hypoxia/metabolism , Male , Neoplasm Grading , Neoplasm Staging , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/pathology , Prognosis , ROC Curve
13.
Cancer Immunol Res ; 9(8): 891-908, 2021 08.
Article in English | MEDLINE | ID: mdl-34039653

ABSTRACT

The complement system plays a complex role in cancer. In clear cell renal cell carcinoma (ccRCC), local production of complement proteins drives tumor progression, but the mechanisms by which they do this are poorly understood. We found that complement activation, as reflected by high plasma C4d or as C4d deposits at the tumor site, was associated with poor prognosis in two cohorts of patients with ccRCC. High expression of the C4-activating enzyme C1s by tumor cells was associated with poor prognosis in three cohorts. Multivariate Cox analysis revealed that the prognostic value of C1s was independent from complement deposits, suggesting the possibility of complement cascade-unrelated, protumoral functions for C1s. Silencing of C1s in cancer cell lines resulted in decreased proliferation and viability of the cells and in increased activation of T cells in in vitro cocultures. Tumors expressing high levels of C1s showed high infiltration of macrophages and T cells. Modification of the tumor cell phenotype and T-cell activation were independent of extracellular C1s levels, suggesting that C1s was acting in an intracellular, noncanonical manner. In conclusion, our data point to C1s playing a dual role in promoting ccRCC progression by triggering complement activation and by modulating the tumor cell phenotype and tumor microenvironment in a complement cascade-independent, noncanonical manner. Overexpression of C1s by tumor cells could be a new escape mechanism to promote tumor progression.See related Spotlight by Magrini and Garlanda, p. 855. See article by Daugan et al., p. 909 (40).


Subject(s)
Biomarkers, Tumor/metabolism , Complement C1s/metabolism , Complement C4/metabolism , Kidney Neoplasms/genetics , Animals , Case-Control Studies , Humans , Mice , Prognosis , Prospective Studies , Transfection
14.
PLoS One ; 16(5): e0252026, 2021.
Article in English | MEDLINE | ID: mdl-34038475

ABSTRACT

To investigate the mechanisms underlying the SARS-CoV-2 infection severity observed in patients with obesity, we performed a prospective study of 51 patients evaluating the impact of multiple immune parameters during 2 weeks after admission, on vital organs' functions according to body mass index (BMI) categories. High-dimensional flow cytometric characterization of immune cell subsets was performed at admission, 30 systemic cytokines/chemokines levels were sequentially measured, thirteen endothelial markers were determined at admission and at the zenith of the cytokines. Computed tomography scans on admission were quantified for lung damage and hepatic steatosis (n = 23). Abnormal BMI (> 25) observed in 72.6% of patients, was associated with a higher rate of intensive care unit hospitalization (p = 0.044). SARS-CoV-2 RNAaemia, peripheral immune cell subsets and cytokines/chemokines were similar among BMI groups. A significant association between inflammatory cytokines and liver, renal, and endothelial dysfunctions was observed only in patients with obesity (BMI > 30). In contrast, early signs of lung damage (ground-glass opacity) correlated with Th1/M1/inflammatory cytokines only in normal weight patients. Later lesions of pulmonary consolidation correlated with BMI but were independent of cytokine levels. Our study reveals distinct physiopathological mechanisms associated with SARS-CoV-2 infection in patients with obesity that may have important clinical implications.


Subject(s)
COVID-19/pathology , Cytokines/metabolism , Liver/physiopathology , Lung/physiopathology , Obesity/pathology , Aged , Biomarkers/metabolism , Body Mass Index , COVID-19/complications , COVID-19/virology , Chemokines/blood , Chemokines/metabolism , Cytokines/blood , Endothelium, Vascular/metabolism , Endothelium, Vascular/physiopathology , Female , Hospitalization/statistics & numerical data , Humans , Intensive Care Units , Liver/diagnostic imaging , Lung/diagnostic imaging , Male , Middle Aged , Obesity/complications , Prospective Studies , RNA, Viral/blood , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , Severity of Illness Index
15.
J Exp Med ; 218(1)2021 01 04.
Article in English | MEDLINE | ID: mdl-33601413

ABSTRACT

Whereas T cells have been considered the major immune cells of the tumor microenvironment able to induce tumor regression and control cancer clinical outcome, a burst of recent publications pointed to the fact that B cells may also play a prominent role. Activated in germinal centers of tertiary lymphoid structures, B cells can directly present tumor-associated antigens to T cells or produce antibodies that increase antigen presentation to T cells or kill tumor cells, resulting in a beneficial clinical impact. Immune complexes can also increase inflammation, angiogenesis, and immunosuppression via macrophage and complement activation, resulting in deleterious impact.


Subject(s)
Antigens, Neoplasm/immunology , B-Lymphocytes/immunology , Neoplasms/immunology , Neovascularization, Pathologic/immunology , Tumor Microenvironment/immunology , Animals , B-Lymphocytes/pathology , Complement Activation , Humans , Inflammation/immunology , Inflammation/pathology , Macrophages/pathology , Neoplasms/blood supply , Neoplasms/pathology , Neovascularization, Pathologic/pathology , T-Lymphocytes/immunology , T-Lymphocytes/pathology
16.
Semin Immunol ; 48: 101406, 2020 04.
Article in English | MEDLINE | ID: mdl-33248905

ABSTRACT

Tumors progression is under the control of a heterogeneous microenvironment composed of immune cells, fibroblasts, blood and lymphatic vessels, in which T cells have been demonstrated to be major actors, through their cytotoxic and cytokine producing effector functions and their long term memory that protects against metastasis. In this scenario, lessons from mouse models taught that B cells exert a protumoral role, via macrophage-dependent activation of inflammation. However, it became progressively evident from studies in patients with human cancers that the anti-tumor responses can be generated and controlled in tertiary lymphoid structures (TLS) that concentrate most of the intratumoral B cells and where B cells can differentiate into plasma cells and memory cells. Furthermore, recent studies demonstrated that the presence in tumors of B cells and TLS are associated with favorable outcome in patients treated by immunotherapy, unraveling TLS as a new predictive marker of anti-tumor response human cancers. This review encompasses the characteristics and functions of TLS and of B cells in human tumors, their prognostic and theranostic impact and summarizes the mouse models used to induce TLS neogenesis in tumors.


Subject(s)
B-Lymphocytes/immunology , Biomarkers, Tumor/immunology , Immunotherapy/methods , Neoplasms/therapy , T-Lymphocytes/immunology , Tertiary Lymphoid Structures/immunology , Animals , Biomarkers, Pharmacological , Humans , Immunomodulation , Neoplasms/immunology , Tumor Microenvironment
17.
Genome Med ; 12(1): 86, 2020 10 06.
Article in English | MEDLINE | ID: mdl-33023656

ABSTRACT

Quantifying tissue-infiltrating immune and stromal cells provides clinically relevant information for various diseases. While numerous methods can quantify immune or stromal cells in human tissue samples from transcriptomic data, few are available for mouse studies. We introduce murine Microenvironment Cell Population counter (mMCP-counter), a method based on highly specific transcriptomic markers that accurately quantify 16 immune and stromal murine cell populations. We validated mMCP-counter with flow cytometry data and showed that mMCP-counter outperforms existing methods. We showed that mMCP-counter scores are predictive of response to immune checkpoint blockade in cancer mouse models and identify early immune impacts of Alzheimer's disease.


Subject(s)
Cellular Microenvironment/genetics , Leukocytes/metabolism , Stromal Cells/metabolism , Transcriptome , Alzheimer Disease/etiology , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Animals , Biomarkers , Cellular Microenvironment/drug effects , Cellular Microenvironment/immunology , Computational Biology/methods , Databases, Genetic , Female , Gene Expression Profiling , High-Throughput Nucleotide Sequencing , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Proteins/metabolism , Leukocytes/drug effects , Leukocytes/immunology , Mice , ROC Curve , Single-Cell Analysis , Stromal Cells/drug effects , Stromal Cells/pathology
18.
J Immunother Cancer ; 8(2)2020 10.
Article in English | MEDLINE | ID: mdl-33067317

ABSTRACT

BACKGROUND: Natural killer (NK) cells play a crucial role in tumor immunosurveillance through their cytotoxic effector functions and their capacity to interact with other immune cells to build a coordinated antitumor immune response. Emerging data reveal NK cell dysfunction within the tumor microenvironment (TME) through checkpoint inhibitory molecules associated with a regulatory phenotype. OBJECTIVE: We aimed at analyzing the gene expression profile of intratumoral NK cells compared with non-tumorous NK cells, and to characterize their inhibitory function in the TME. METHODS: NK cells were sorted from human lung tumor tissue and compared with non- tumoral distant lungs. RESULTS: In the current study, we identify a unique gene signature of NK cell dysfunction in human non-small cell lung carcinoma (NSCLC). First, transcriptomic analysis reveals significant changes related to migratory pattern with a downregulation of sphingosine-1-phosphate receptor 1 (S1PR1) and CX3C chemokine receptor 1 (CX3CR1) and overexpression of C-X-C chemokine receptor type 5 (CXCR5) and C-X-C chemokine receptor type 6 (CXCR6). Second, cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) and killer cell lectin like receptor (KLRC1) inhibitory molecules were increased in intratumoral NK cells, and CTLA-4 blockade could partially restore MHC class II level on dendritic cell (DC) that was impaired during the DCs/NK cell cross talk. Finally, NK cell density impacts the positive prognostic value of CD8+ T cells in NSCLC. CONCLUSIONS: These findings demonstrate novel molecular cues associated with NK cell inhibitory functions in NSCLC.


Subject(s)
Biomarkers, Tumor/metabolism , Immunotherapy/methods , Killer Cells, Natural/immunology , Transcriptome/genetics , Humans , Tumor Microenvironment
19.
Front Immunol ; 11: 784, 2020.
Article in English | MEDLINE | ID: mdl-32457745

ABSTRACT

Tumor cells constantly interact with their microenvironment, which comprises a variety of immune cells together with endothelial cells and fibroblasts. The composition of the tumor microenvironment (TME) has been shown to influence response to immune checkpoint blockade (ICB). ICB takes advantage of immune cell infiltration in the tumor to reinvigorate an efficacious antitumoral immune response. In addition to tumor cell intrinsic biomarkers, increasing data pinpoint the importance of the TME in guiding patient selection and combination therapies. Here, we review recent efforts in determining how various components of the TME can influence response and resistance to ICB. Although a large body of evidence points to the extent and functional orientation of the T cell infiltrate as important in therapy response, recent studies also confirm a role for other components of the TME, such as B cells, myeloid lineage cells, cancer-associated fibroblasts, and vasculature. If the ultimate goal of curative cancer therapies is to induce a long-term memory T cell response, the other components of the TME may positively or negatively modulate the induction of efficient antitumor immunity. The emergence of novel high-throughput methods for analyzing the TME, including transcriptomics, has allowed tremendous developments in the field, with the expansion of patient cohorts, and the identification of TME-based markers of therapy response. Together, these studies open the possibility of including TME-based markers for selecting patients that are likely to respond to specific therapies, and pave the way to personalized medicine in oncology.


Subject(s)
Immune Checkpoint Inhibitors/therapeutic use , Immunity, Innate , Immunotherapy/methods , Neoplasms/immunology , Neoplasms/therapy , Tumor Microenvironment/immunology , Animals , B-Lymphocytes/immunology , Biomarkers, Tumor/metabolism , Humans , Lymphocytes, Tumor-Infiltrating/immunology , Neoplasms/metabolism , T-Lymphocytes/immunology
20.
Clin Cancer Res ; 26(16): 4381-4389, 2020 08 15.
Article in English | MEDLINE | ID: mdl-32269054

ABSTRACT

PURPOSE: The impact of tertiary lymphoid structures (TLS) in hepatocellular carcinoma (HCC) progression is being extensively investigated. However, their presence during the early steps of human liver carcinogenesis remains unknown. We thus aimed to determine whether TLS are induced in preneoplastic/early hepatic lesions (EHL), and whether they are associated with a particular immune profile. EXPERIMENTAL DESIGN: A series of 127 EHLs (low/high-grade dysplastic nodules, early HCC, and small and progressed HCC) was included in the study. TLSs were investigated by pathologic reviewing. Densities of immune cells were assessed using IHC. A subset of lesions was microdissected and gene expression profiling was performed with a custom NanoString panel. RESULTS: Compared with surrounding cirrhotic nodules, EHL of all stages displayed increased densities of T cells, B cells, and dendritic cells. Immature TLSs were identified in 24% of EHL. Gene expression profiling identified a subset of EHL with elevated mRNA levels of various cytokines involved in immune cells' recruitment and TLS induction. This subgroup of EHL also showed overexpression of genes related to T- and B-cells' activation and antigen presentation, as well as those related to immunosuppression and immune exhaustion. CONCLUSIONS: Local immune activation occurs in the very early steps of liver carcinogenesis; however, it may not be fully efficient and paradoxically favor immune evasion and progression to full-blown HCC. These results have implications for the development of anti-HCC chemopreventive strategies in cirrhotic patients.


Subject(s)
Carcinoma, Hepatocellular/immunology , Liver Neoplasms/immunology , Liver/immunology , Tertiary Lymphoid Structures/genetics , Aged , B-Lymphocytes/immunology , Biomarkers, Tumor/immunology , Carcinogenesis/genetics , Carcinogenesis/immunology , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Female , Gene Expression Profiling , Gene Expression Regulation, Neoplastic/genetics , Gene Expression Regulation, Neoplastic/immunology , Humans , Liver/metabolism , Liver/pathology , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Male , Middle Aged , T-Lymphocytes/immunology , Tertiary Lymphoid Structures/immunology , Tertiary Lymphoid Structures/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...