Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nutr Neurosci ; 26(2): 156-172, 2023 Feb.
Article in English | MEDLINE | ID: mdl-35152858

ABSTRACT

OBJECTIVE: Natural food substances, due to high rates of antioxidants, antiviral and anti-inflammatory properties, have been proposed to have the potential for the prevention or treatment of cognitive deficits, learning and memory deficits and neuro inflammation. In particular, medicinal plants with rich amounts of beneficial components such as flavonoids are one of the most promising therapeutic candidates for the cognitive deficit and memory loss. Herein, we aimed to review the impact of medicinal plants with focus on flavonoids on cognitive dysfunction, learning and memory loss by considering their signaling pathways. METHODS: We extracted 93 preclinical and clinical studies related to the effects of flavonoids on learning and memory and cognition from published papers between 2000 and 2021 in the MEDLINE/PubMed, Cochrane Library, SCOPUS, and Airiti Library databases. RESULTS: In the preclinical studies, at least there seem to be two main neurological and biological processes in which flavonoids contribute to the improvement and/or prevention of learning, memory deficit and cognitive dysfunction: (1) Regulation of neurotransmission system and (2) Enhancement of neurogenesis, synaptic plasticity and neuronal survival. CONCLUSION: Although useful effects of flavonoids on learning and memory in preclinical investigations have been approved, more clinical trials are required to find out whether flavonoids and/or other ingredients of plants have the potent to prevent or treat neurodegenerative disorders.


Subject(s)
Cognitive Dysfunction , Memory , Humans , Flavonoids/therapeutic use , Flavonoids/pharmacology , Learning , Cognition , Memory Disorders/drug therapy , Cognitive Dysfunction/drug therapy
2.
Front Cell Dev Biol ; 10: 1082657, 2022.
Article in English | MEDLINE | ID: mdl-36704201

ABSTRACT

Assisted reproductive techniques as a new regenerative medicine approach have significantly contributed to solving infertility problems that affect approximately 15% of couples worldwide. However, the success rate of an in vitro fertilization (IVF) cycle remains only about 20%-30%, and 75% of these losses are due to implantation failure (the crucial rate-limiting step of gestation). Implantation failure and abnormal placenta formation are mainly caused by defective adhesion, invasion, and angiogenesis. Placental insufficiency endangers both the mother's and the fetus's health. Therefore, we suggested a novel treatment strategy to improve endometrial receptivity and implantation success rate. In this strategy, regulating mir-30d expression as an upstream transcriptomic modifier of the embryo implantation results in modified expression of the involved genes in embryonic adhesion, invasion, and angiogenesis and consequently impedes implantation failure. For this purpose, "scaffold/matrix attachment regions (S/MARs)" are employed as non-viral episomal vectors, transfecting into trophoblasts by exosome-liposome hybrid carriers. These vectors comprise CRISPR/dCas9 with a guide RNA to exclusively induce miR-30d gene expression in hypoxic stress conditions. In order to avoid concerns about the fetus's genetic manipulation, our vector would be transfected specifically into the trophoblast layer of the blastocyst via binding to trophoblast Erb-B4 receptors without entering the inner cell mass. Additionally, S/MAR episomal vectors do not integrate with the original cell DNA. As an on/off regulatory switch, a hypoxia-sensitive promoter (HRE) is localized upstream of dCas9. The miR-30d expression increases before and during the implantation and placental insufficiency conditions and is extinguished after hypoxia elimination. This hypothesis emphasizes that improving the adhesion, invasion, and angiogenesis in the uterine microenvironment during pregnancy will result in increased implantation success and reduced placental insufficiency, as a new insight in translational medicine.

3.
Metab Brain Dis ; 35(4): 615-625, 2020 04.
Article in English | MEDLINE | ID: mdl-32062747

ABSTRACT

Cerebellar ataxia (CA) is a form of ataxia that adversely affects the cerebellum. Cell replacement therapy (CRT) has been considered as a potential treatment for neurological disorders. In this report, we investigated the neuro-restorative effects of human chorionic stem cells (HCSCs) transplantation on rat model of CA induced by 3-acetylpyridine (3-AP). In this regard, HCSCs were isolated and phenotypically determined. Next, a single injection of 3-AP was administered for ataxia induction, and bilateral HCSCs implantation was conducted 3 days after 3-AP injection, followed by expression analysis of a number of apoptotic, autophagic and inflammatory genes as well as vascular endothelial growth factor (VEGF) level, along with assessment of cerebellar neurodegeneration, motor coordination and muscle activity. The findings revealed that grafting of HCSCs in 3-AP model of ataxia decreased the expression levels of several inflammatory, autophagic and apoptotic genes and provoked the up-regulation of VEGF in the cerebellar region, prevented the degeneration of Purkinje cells caused by 3-AP toxicity and ameliorated motor coordination and muscle function. In conclusion, these data indicate in vivo efficacy of HCSCs in the reestablishment of motor skills and reversal of CA.


Subject(s)
Cerebellar Ataxia/therapy , Cerebellum/pathology , Motor Activity/physiology , Nerve Degeneration/therapy , Stem Cell Transplantation , Stem Cells/metabolism , Animals , Apoptosis/physiology , Cerebellar Ataxia/chemically induced , Cerebellar Ataxia/metabolism , Cerebellar Ataxia/physiopathology , Cerebellum/metabolism , Cerebellum/physiopathology , Disease Models, Animal , Humans , Inflammation/metabolism , Inflammation/pathology , Inflammation/physiopathology , Nerve Degeneration/metabolism , Nerve Degeneration/physiopathology , Pyridines , Rats , Vascular Endothelial Growth Factor A/metabolism
4.
Behav Brain Res ; 367: 158-165, 2019 07 23.
Article in English | MEDLINE | ID: mdl-30905711

ABSTRACT

Alzheimer's disease (AD) is a degenerative nerve disease which adversely affects memory and learning skills. Currently, there is no disease-modifying therapeutic approach for AD. However, a growing body of literature suggests cell based therapies as a promising remedy for neurological disorders. Among the potential cell sources, testis- derived Sertoli cells (SCs) appear to be an attractive choice due to their immune-privileged capacities. Herein, we investigated the neuro-restorative/protective effects of SC transplants in a rat model of amyloid beta toxicity. To this end, GATA-4 and vimentin positive SCs were transplanted into rats with amyloid beta induced hippocampal lesions. According to our in vivo results, implanted SCs survived, exhibited reduction in both apoptosis as well as astrocytic migration. Additionally, transplantation of SCs restored hippocampus dependent memory and learning, along with the recovery of long-term synaptic plasticity. Taken together, these data indicate that SCs are a valuable source for cell-based therapies particularly aimed at AD.


Subject(s)
Alzheimer Disease/surgery , Amyloid beta-Peptides/toxicity , Apoptosis , Gliosis , Hippocampus/surgery , Neuronal Plasticity , Peptide Fragments/toxicity , Sertoli Cells/transplantation , Alzheimer Disease/pathology , Alzheimer Disease/physiopathology , Animals , Disease Models, Animal , Hippocampus/pathology , Hippocampus/physiopathology , Learning/physiology , Male , Rats , Rats, Wistar , Sertoli Cells/metabolism , Vimentin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...