Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Environ Manage ; 241: 427-438, 2019 Jul 01.
Article in English | MEDLINE | ID: mdl-31072637

ABSTRACT

Drinking water treatment plants (DWTPs) designed to remove natural organic matter (NOM) are challenged as concentrations of NOM in raw waters are increasing. Here, we assess seasonal differences in NOM quality and quantity, from raw waters to the distribution network, at three large DWTPs in Oslo, Stockholm and Helsinki. Samples, collected during stable stratification in both winter and summer and during the autumnal turnover, were analysed for NOM concentrations and composition. The NOM was characterized by common routine parameters, size and content (TFF, LC-OCD, fluorescence) and biodegradability. The NOM concentration decreased to 2.5 mg/L (55%), 4.0 mg/L (48%) and 5.7 mg/L (76%) at the respective DWTPs in Oslo, Stockholm and Helsinki. The NOM in raw waters were predominantly in the largest size fraction (>50 kDa), in particular from Oslo. High MW fractions >50 kDa and humics remained the largest fractions with minimum 30% and maximum 80% of the total NOM. The BDOC in treated water <0.3 mg/L and the conditions in the distribution network imply low probability for bacteria regrowth. The multi-step treatment consisting of coagulation/flocculation, sedimentation, rapid sand filtration, ozonation and biological activated carbon filtration (BAC) was most effective in removing NOM. Coagulation/flocculation followed by sedimentation and sand filtration were critical, especially for the removal of biopolymers and humics, and somewhat for building blocks. The sand filtration provided up to 25% additional removal of biopolymers and below 7% removal of other fractions. The ozonation and BAC was more effective and removed 11% of biopolymers, and about 35% of building blocks and LMW neutrals.


Subject(s)
Drinking Water , Water Purification , Cold Climate , Filtration , Organic Chemicals
2.
Plant Physiol ; 46(5): 720-7, 1970 Nov.
Article in English | MEDLINE | ID: mdl-16657536

ABSTRACT

Inorganic sulfate enters the mycelia of Aspergillus nidulans, Penicillium chrysogenum, and Penicillium notatum by a temperature-, energy-, pH-, ionic strength-, and concentration-dependent transport system ("permease"). Transport is unidirectional. In the presence of excess external sulfate, ATP sulfurylase-negative mutants will accumulate inorganic sulfate intracellularly to a level of about 0.04 m. The intracellular sulfate can be retained against a concentration gradient. Retention is not energy-dependent, nor is there any exchange between intracellular (accumulated) and extracellular sulfate. The sulfate permease is under metabolic control. Sulfur starvation of high methionine-grown mycelia results in about a 1000-fold increase in the specific sulfate transport activity at low external sulfate concentrations. l-Methionine is a metabolic repressor of the sulfate permease, while intracellular sulfate and possibly l-cysteine (or a derivative of l-cysteine) are feedback inhibitors. Sulfate transport follows hyperbolic saturation kinetics with a Michaelis constant (Km) value of 6 x 10(-5) to 10(-4)m and a V(max) (for maximally sulfurstarved mycelia) of about 5 micromoles per gram per minute. Refeeding sulfur-starved mycelia with sulfate or cysteine results in about a 10-fold decrease in the V(max) value with no marked change in the Km. Azide and dinitrophenol also reduce the V(max.).

SELECTION OF CITATIONS
SEARCH DETAIL
...