Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Water Res ; 258: 121790, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38833810

ABSTRACT

Micropollutants removal efficiency strongly vary across different aerobic wastewater treatment plants, resulting in their frequent detection in surface and ground waters. Seasonal temperature variation is a major factor influencing plant performance, but it is still unclear how prolonged periods of temperature change impact microbiome and micropollutant biotransformation. This work investigates the effect of long-term temperature variation on the microbial dynamics in an activated sludge system, and the impact on micropollutant biotransformation. Sequencing batch reactors were used as model system and 4-40 °C temperature range was studied. 16S rRNA amplicon sequencing showed that temperature drives microbial structure (gDNA) and activity (RNA), rather than time, and this was stronger below 15 °C and above 25 °C. The microbial community was richest and more diverse at 20 °C, while rarer and more specific taxa became predominant over time, at more extreme temperatures. This suggested that less abundant taxa might be responsible for maintaining the biotransformation capability in the activated sludge at extreme temperatures. Micropollutant biotransformation rates mostly deviated from the classic Arrhenius model below 15 °C and above 25 °C, indicating that prolonged exposure to temperature changes leads to temperature-induced taxonomic shifts, resulting in the emerging of different sets of biotransformation pathways over different temperature ranges.


Subject(s)
Microbiota , RNA, Ribosomal, 16S , Sewage , Temperature , Sewage/microbiology , RNA, Ribosomal, 16S/genetics , Waste Disposal, Fluid , Water Pollutants, Chemical/metabolism , Bioreactors/microbiology , Biotransformation
2.
J Water Health ; 20(12): 1733-1747, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36573676

ABSTRACT

This study assessed the bacterial community composition of a drinking water system (DWS) serving a mid-sized city (120,000 inhabitants) in Brazil. Water samples, including raw and treated water, were collected at seven points throughout the DWS. DNA was extracted and analysed using high-throughput sequencing (Ion Torrent). Free chlorine and turbidity were measured in situ. Results showed that the highest relative abundance of 16S rRNA genes was from phyla Proteobacteria, followed by Bacteroidetes and Actinobacteria. The next most abundant phylum was Cyanobacteria, represented by Arthronema, Calothrix, and Synechococcus. An interesting observation was that the DNA-based analysis suggested a bacterial community change in the distribution network, with treated reservoir water being very different from the network samples. This suggests active microbiology within the distribution network and a tendency for bacterial diversity to decrease after chlorine disinfection but increase after pipeline distribution. In raw water, a predominance of Proteobacteria was observed with reduced Cyanobacteria, showing a negative correlation. In treated water, Proteobacteria were negatively correlated with Bacteroidetes. Finally, 16S rRNA genes from Firmicutes (especially Staphylococcus) had a high abundance in the chlorinated water, which may indicate the phylum's resistance to chlorine residuals. Opportunistic pathogens, e.g., Mycobacteria, Legionella, and Staphylococcus, were also observed.


Subject(s)
Cyanobacteria , Drinking Water , Drinking Water/microbiology , Chlorine/pharmacology , RNA, Ribosomal, 16S/genetics , Brazil , Proteobacteria/genetics , Cyanobacteria/genetics , Bacteroidetes/genetics , Water Supply
3.
Front Microbiol ; 12: 670928, 2021.
Article in English | MEDLINE | ID: mdl-34276604

ABSTRACT

Rhodococcus equi ATCC13557 was selected as a model organism to study oestrogen degradation based on its previous ability to degrade 17α-ethinylestradiol (EE2). Biodegradation experiments revealed that R. equi ATCC13557 was unable to metabolise EE2. However, it was able to metabolise E2 with the major metabolite being E1 with no further degradation of E1. However, the conversion of E2 into E1 was incomplete, with 11.2 and 50.6% of E2 degraded in mixed (E1-E2-EE2) and E2-only conditions, respectively. Therefore, the metabolic pathway of E2 degradation by R. equi ATCC13557 may have two possible pathways. The genome of R. equi ATCC13557 was sequenced, assembled, and mapped for the first time. The genome analysis allowed the identification of genes possibly responsible for the observed biodegradation characteristics of R. equi ATCC13557. Several genes within R. equi ATCC13557 are similar, but not identical in sequence, to those identified within the genomes of other oestrogen degrading bacteria, including Pseudomonas putida strain SJTE-1 and Sphingomonas strain KC8. Homologous gene sequences coding for enzymes potentially involved in oestrogen degradation, most commonly a cytochrome P450 monooxygenase (oecB), extradiol dioxygenase (oecC), and 17ß-hydroxysteroid dehydrogenase (oecA), were identified within the genome of R. equi ATCC13557. These searches also revealed a gene cluster potentially coding for enzymes involved in steroid/oestrogen degradation; 3-carboxyethylcatechol 2,3-dioxygenase, 2-hydroxymuconic semialdehyde hydrolase, 3-alpha-(or 20-beta)-hydroxysteroid dehydrogenase, 3-(3-hydroxy-phenyl)propionate hydroxylase, cytochrome P450 monooxygenase, and 3-oxosteroid 1-dehydrogenase. Further, the searches revealed steroid hormone metabolism gene clusters from the 9, 10-seco pathway, therefore R. equi ATCC13557 also has the potential to metabolise other steroid hormones such as cholesterol.

4.
Environ Sci Technol ; 54(19): 12214-12225, 2020 10 06.
Article in English | MEDLINE | ID: mdl-32897072

ABSTRACT

Temperature is a key factor that influences chemical biotransformation potential and rates, on which exposure and fate models rely to predict the environmental (micro)pollutant fate. Arrhenius-based models are currently implemented in environmental exposure assessment to adapt biotransformation rates to actual temperatures, assuming validity in the 0-30 °C range. However, evidence on how temperature shifts affect the physicochemical and microbial features in biological systems is scarce, questioning the validity of the existing modeling approaches. In this work, laboratory-scale batch assays were designed to investigate how a mixed microbial community responds to short-term temperature shifts, and how this impacts its ability to biotransform a range of structurally diverse micropollutants. Our results revealed three distinct kinetic responses at temperatures above 20 °C, mostly deviating from the classic Arrhenius-type behavior. Micropollutants with similar temperature responses appeared to undergo mostly similar initial biotransformation reactions, with substitution-type reactions maintaining Arrhenius-type behavior up to higher temperatures than oxidation-type reactions. Above 20 °C, the microbial community also showed marked shifts in both composition and activity, which mostly correlated with the observed deviations from Arrhenius-type behavior, with compositional changes becoming a more relevant factor in biotransformations catalyzed by more specific enzymes (e.g., oxidation reactions). Our findings underline the need to re-examine and further develop current environmental fate models by integrating biological aspects, to improve accuracy in predicting the environmental fate of micropollutants.


Subject(s)
Microbiota , Biotransformation , Oxidation-Reduction , Temperature
5.
Environ Pollut ; 264: 114738, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32417579

ABSTRACT

Volatile Petroleum Hydrocarbon (VPH) class effects on soil microbial composition were investigated using two next-generation sequencing (NGS) techniques - 454 pyrosequencing and ion torrent sequencing. Microbial activity was stimulated by adding different VPH compound classes to the sandy soil in comparison with live controls without VPH addition. Microbial community structure was significantly affected by the various VPH classes. At the genus level, Rhodococcus, Desulfosporosinus, Polaromonas, Mesorhizobium and Methylibium had the highest relative abundances in the straight-chain alkane (str-alk) treated soil as compared to the control (p < 0.05, 2 sample t-tests) while Pseudomonas was more dominant in the cyclic alkane (cyc-alk) contaminated soil. Pseudonocardia was significantly higher in relative abundance in the aromatic hydrocarbon (aro-H) treated batches as compared to the control (p < 0.05, 2 sample t-tests). A non-metric multidimensional scaling (NMDS) of the Bray Curtis similarity between microbial communities in the batches revealed at least 60% similarity for each treatment and also showed that VPH class was a statistically significant factor in shaping the bacterial communities in the soil treatments (Global R = 0.861, p < 0.01). The NGS platforms (454 GS Junior and Ion torrent) compared in this study did not appear to affect the outcomes of the microbial community structure and composition analysis.


Subject(s)
Microbiota , Petroleum , Soil Pollutants/analysis , Biodegradation, Environmental , Hydrocarbons , Sand , Soil , Soil Microbiology
6.
Water Res ; 160: 278-287, 2019 Sep 01.
Article in English | MEDLINE | ID: mdl-31154125

ABSTRACT

Quantitative Structure Biodegradation Relationships (QSBRs) are a tool to predict the biodegradability of chemicals. The objective of this work was to generate reliable biodegradation data for mono-aromatic chemicals in order to evaluate and verify previously developed QSBRs models. A robust biodegradation test method was developed to estimate specific substrate utilization rates, which were used as a proxy for biodegradation rates of chemicals in pure culture. Five representative mono-aromatic chemicals were selected that spanned a wide range of biodegradability. Aerobic biodegradation experiments were performed for each chemical in batch reactors seeded with known degraders. Chemical removal, degrader growth and CO2 production were monitored over time. Experimental data were interpreted using a full carbon mass balance model, and Monod kinetic parameters (Y, Ks, qmax and µmax) for each chemical were determined. In addition, stoichiometric equations for aerobic mineralization of the test chemicals were developed. The theoretically estimated biomass and CO2 yields were similar to those experimentally observed; 35% (s.d ±â€¯8%) of the recovered substrate carbon was converted to biomass, and 65% (s.d ±â€¯8%) was mineralised to CO2. Significant correlations were observed between the experimentally determined specific substrate utilization rates, as represented by qmax and qmax/Ks, at high and low substrate concentrations, respectively, and the first order biodegradation rate constants predicted by a previous QSBR study. Similarly, the correlation between qmax and selected molecular descriptors characterizing the chemicals structure in a previous QSBR study was also significant. These results suggest that QSBR models can be reliable and robust in prioritising chemical half-lives for regulatory screening purposes.


Subject(s)
Carbon , Biodegradation, Environmental , Biomass , Kinetics
7.
Water Res ; 157: 181-190, 2019 Jun 15.
Article in English | MEDLINE | ID: mdl-30953853

ABSTRACT

The objective of this work was to develop a QSBR model for the prioritization of organic pollutants based on biodegradation rates from a database containing globally harmonized biodegradation tests using relevant molecular descriptors. To do this, we first categorized the chemicals into three groups (Group 1: simple aromatic chemicals with a single ring, Group 2: aromatic chemicals with multiple rings and Group3: Group 1 plus Group 2) based on molecular descriptors, estimated the first order biodegradation rate of the chemicals using rating values derived from the BIOWIN3 model, and finally developed, validated and defined the applicability domain of models for each group using a multiple linear regression approach. All the developed QSBR models complied with OECD principles for QSAR validation. The biodegradation rate in the models for the two groups (Group 2 and 3 chemicals) are associated with abstract molecular descriptors that provide little relevant practical information towards understanding the relationship between chemical structure and biodegradation rates. However, molecular descriptors associated with the QSBR model for Group 1 chemicals (R2 = 0.89, Q2loo = 0.87) provided information on properties that can readily be scrutinised and interpreted in relation to biodegradation processes. In combination, these results lead to the conclusion that QSBRs can be an alternative tool to estimate the persistence of chemicals, some of which can provide further insights into those factors affecting biodegradation.


Subject(s)
Environmental Pollutants , Biodegradation, Environmental , Linear Models , Quantitative Structure-Activity Relationship
8.
Water Res ; 129: 499-508, 2018 02 01.
Article in English | MEDLINE | ID: mdl-29195186

ABSTRACT

Little is known about the forces that determine the assembly of diverse bacterial communities inhabiting drinking water treatment filters and how this affects drinking water quality. Two contrasting ecological theories can help to understand how natural microbial communities assemble; niche theory and neutral theory, where environmental deterministic factors or stochastic factors predominate respectively. This study investigates the development of the microbial community on two common contrasting filter materials (quartz sand and granular activated carbon-GAC), to elucidate the main factors governing their assembly, through the evaluation of environmental (i.e. filter medium type) and stochastic forces (random deaths, births and immigration). Laboratory-scale filter columns were used to mimic a rapid gravity filter; the microbiome of the filter materials, and of the filter influent and effluent, was characterised using next generation 16S rRNA gene amplicon sequencing and flow-cytometry. Chemical parameters (i.e. dissolved organic carbon, trihalomethanes formation) were also monitored to assess the final effluent quality. The filter communities seemed to be strongly assembled by selection rather than neutral processes, with only 28% of those OTUs shared with the source water detected on the filter medium following predictions using a neutral community model. GAC hosted a phylogenetically more diverse community than sand. The two filter media communities seeded the effluent water, triggering differences in both water quality and community composition of the effluents. Overall, GAC proved to be better than sand in controlling microbial growth, by promoting higher bacterial decay rates and hosting less bacterial cells, and showed better performance for putative pathogen control by leaking less Legionella cells into the effluent water.


Subject(s)
Filtration/methods , Water Microbiology , Water Purification/methods , Water Quality , Bacteria/genetics , Drinking Water/chemistry , Drinking Water/microbiology , Filtration/instrumentation , RNA, Ribosomal, 16S/genetics , Water Purification/instrumentation
9.
Environ Sci Process Impacts ; 19(10): 1260-1269, 2017 Oct 18.
Article in English | MEDLINE | ID: mdl-28920987

ABSTRACT

We studied the effects of two percent by weight activated carbon versus biochar amendments in 93 cm long sand columns on the biofiltration of petroleum vapours released by a non-aqueous phase liquid (NAPL) source. Activated carbon greatly enhanced, whereas biochar slightly reduced, the biofiltration of volatile petroleum hydrocarbons (VPHs) over 430 days. Sorbent amendment benefitted the VPH biofiltration by retarding breakthrough during the biodegradation lag phase. Subsequently, sorbent amendment briefly reduced the mineralization of petroleum hydrocarbons by limiting their bioavailability. During the last and longest study period, when conditions became less supportive of microbial growth, because of inorganic nutrient scarcity, the sorbents again improved the pollution attenuation by preventing the degrading microorganisms from being overloaded with VPHs. A 16S rRNA gene based analysis showed sorbent amendment effects on soil microbial communities. Nocardioidaceae benefitted the most from petroleum hydrocarbons in activated carbon amended soil, whereas Pseudomonadacea predominated in unamended soil. Whilst the degrading microorganisms were overloaded with VPHs in the unamended soil, the reduced mobility and bioavailability of VPHs in the activated carbon amended soil led to the emergence of communities with higher specific substrate affinity, which removed bioavailable VPHs effectively at low concentrations. A numerical pollutant fate model reproduced these experimental observations by considering sorption effects on the pollutant migration and bioavailability for growth of VPH degrading biomass, which is limited by a maximum soil biomass carrying capacity. Activated carbon was a much stronger sorbent for VPHs than biochar, which explained the diverging effects of the two sorbents in this study.


Subject(s)
Charcoal/chemistry , Models, Theoretical , Petroleum/analysis , Soil Pollutants/analysis , Soil/chemistry , Volatile Organic Compounds/analysis , Adsorption , Biodegradation, Environmental , Biomass , Filtration , Microbial Consortia/genetics , RNA, Ribosomal, 16S/genetics , Soil Microbiology
10.
FEMS Microbiol Ecol ; 91(6)2015 Jun.
Article in English | MEDLINE | ID: mdl-25944871

ABSTRACT

Rieske non-heme iron oxygenases enzymes have been widely studied, as they catalyse essential reactions initiating the bacterial degradation of organic compounds, for instance aromatic hydrocarbons. The genes encoding these enzymes offer a potential target for studying aromatic hydrocarbon-degrading organisms in the environment. However, previously reported primer sets that target dioxygenase gene sequences or the common conserved Rieske centre of aromatics dioxygenases have limited specificity and/or target non-dioxygenase genes. In this work, an extensive database of dioxygenase α-subunit gene sequences was constructed, and primer sets targeting the conserved Rieske centre were developed. The high specificity of the primers was confirmed by polymerase chain reaction analysis, agarose gel electrophoresis and sequencing. Quantitative polymerase chain reaction (qPCR) assays were also developed and optimized, following MIQE guidelines (Minimum Information for Publication of Quantitative Real-Time PCR Experiments). Comparison of the qPCR quantification of dioxygenases in spiked sediment samples and in pure cultures demonstrated an underestimation of the Ct value, and the requirement for a correction factor at gene abundances below 10(8) gene copies per g of sediment. Externally validated qPCR provides a valuable tool to monitor aromatic hydrocarbon degrader population abundances at contaminated sites.


Subject(s)
Biodegradation, Environmental , DNA Primers/genetics , Dioxygenases/genetics , Hydrocarbons, Aromatic/metabolism , Base Sequence , Burkholderia/genetics , Burkholderia/metabolism , Environment , Mycobacterium/genetics , Mycobacterium/metabolism , Phylogeny , Pseudomonas/genetics , Pseudomonas/metabolism , Real-Time Polymerase Chain Reaction/methods , Rhodococcus/genetics , Rhodococcus/metabolism , Sequence Analysis, DNA
11.
Environ Sci Technol ; 46(9): 5057-66, 2012 May 01.
Article in English | MEDLINE | ID: mdl-22455603

ABSTRACT

We collected urban soil samples impacted by polycyclic aromatic hydrocarbons (PAHs) from a sorbent-based remediation field trial to address concerns about unwanted side-effects of 2% powdered (PAC) or granular (GAC) activated carbon amendment on soil microbiology and pollutant biodegradation. After three years, total microbial cell counts and respiration rates were highest in the GAC amended soil. The predominant bacterial community structure derived from denaturing gradient gel electrophoresis (DGGE) shifted more strongly with time than in response to AC amendment. DGGE band sequencing revealed the presence of taxa with closest affiliations either to known PAH degraders, e.g. Rhodococcus jostii RHA-1, or taxa known to harbor PAH degraders, e.g. Rhodococcus erythropolis, in all soils. Quantification by real-time polymerase chain reaction yielded similar dioxygenases gene copy numbers in unamended, PAC-, or GAC-amended soil. PAH availability assessments in batch tests showed the greatest difference of 75% with and without biocide addition for unamended soil, while the lowest PAH availability overall was measured in PAC-amended, live soil. We conclude that AC had no detrimental effects on soil microbiology, AC-amended soils retained the potential to biodegrade PAHs, but the removal of available pollutants by biodegradation was most notable in unamended soil.


Subject(s)
Charcoal/pharmacology , Microbial Consortia/drug effects , Polycyclic Aromatic Hydrocarbons/metabolism , Soil Microbiology , Adsorption , Biodegradation, Environmental , Denaturing Gradient Gel Electrophoresis , Polymerase Chain Reaction , Soil Pollutants/metabolism
12.
Water Res ; 44(15): 4529-36, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20630559

ABSTRACT

Bioremediation and activated carbon (AC) amendment were compared as remediation strategies for sediment from the River Tyne containing 16.4 +/- 7.3 microg/g polycyclic aromatic hydrocarbons (PAHs) and approximately 5% coal particles by total dry sediment weight. Unamended, nutrient amended (biostimulated) and nutrient and Pseudomonas putida amended (bioaugmented) sediment microcosms failed to show a significant decrease in total sediment PAH concentrations over a one month period. Polyethylene passive (PE) samplers were embedded for 21 days in these sediment microcosms in order to measure the available portion of PAHs and accumulated 4.70 +/- 0.25, 12.43 +/- 1.78, and 23.49 +/- 2.73 microg PAHs/g PE from the unamended, biostimulated, and bioaugmented microcosms, respectively. Higher PAH uptake by PE samplers in biostimulated and bioaugmented microcosms coincided with slower degradation of spiked phenanthrene in sediment-free filtrate from these microcosms compared to filtrate from the unamended microcosms. Microbial community analysis revealed changes in the bacterial community directly following the addition of nutrients, but the added P. putida community failed to establish itself. Addition of 2% by dry sediment weight activated carbon reduced PAH uptake by PE samplers to 0.28 +/- 0.01 microg PAHs/g PE, a greater than 90% reduction compared to the unamended microcosms.


Subject(s)
Bacteria/metabolism , Charcoal/chemistry , Polycyclic Aromatic Hydrocarbons/analysis , Rivers/chemistry , Bacteria/classification , Bacteria/growth & development , Biodegradation, Environmental , Cluster Analysis , Ecosystem , Environmental Restoration and Remediation/methods , Geologic Sediments/chemistry , Geologic Sediments/microbiology , Polycyclic Aromatic Hydrocarbons/metabolism , Pseudomonas putida/growth & development , Pseudomonas putida/metabolism , Reproducibility of Results , Water Microbiology , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...