Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Vet Sci ; 9: 824584, 2022.
Article in English | MEDLINE | ID: mdl-35529837

ABSTRACT

As a top predator, the endangered Australian sea lion (Neophoca cinerea) is a sentinel of ecosystem change, where population trends can reflect broader shifts in the marine environment. The population of this endemic pinniped was historically diminished by commercial sealing, and recovery has been slowed by fishery interactions, disease and, potentially, pollutants. Hookworm infects 100% of neonatal pups and has been identified as a contributor to population decline. Here, a multivariable approach using traditional serological and novel molecular tools such as qPCR and ddPCR was used to examine immune phenotypes of developing Australian sea lion pups infected with the endemic hookworm (Uncinaria sanguinis) from two South Australian colonies. Results show changing immunophenotypes throughout the patent period of infection represented by pro-inflammatory cytokines (IL-6), IgG and acute-phase proteins. Although cytokines may prove useful as markers of resistance, in this study, IL-6 is determined to be an early biomarker of inflammation in Australian sea lion pups, excluding the alternative hypothesis. Additionally, immunological differences between animals from high- and low-intensity hookworm seasons, as well as ivermectin-treated animals, indicate hookworm infection modulation of the host immune response, as evidenced by a lower IL-6 mRNA expression in the non-treated groups. This study of the Australian sea lion is an example of an ecoimmunological approach to disease investigation, which can be applied to evaluate the impact of environmental and anthropogenic factors on susceptibility to infectious diseases in free-ranging species.

2.
PeerJ ; 8: e10306, 2020.
Article in English | MEDLINE | ID: mdl-33240637

ABSTRACT

Measurement of cytokine gene expression by reverse transcription quantitative polymerase chain reaction (RT-qPCR) is used widely to assess the immune system of animals and to identify biomarkers of disease, but its application is limited in wildlife species due to a lack of species-specific reagents. The free-ranging endangered Australian sea lion (Neophoca cinerea) experiences significant clinical disease and high pup mortality due to intestinal hookworm infection. Developing immunological tools specific to the species will aid in the assessment of drivers of disease and its impact in population demographics. This study describes the development and validation of cross-reactive RT-qPCR assays to measure five important cytokines involved in innate and Th1/Th2 responses (IL-6, TNFα, IFNγ, IL-4 and IL-10) in unstimulated blood samples from a range of different mammalian species including the Australian sea lion. All RT-qPCR assays efficiencies ranged between 87% (Ovis aries TNFα) and 111% (Bos taurus IL-10) and had strong linearity (R 2). IL-4 and IFNγ gene expression for N. cinerea fell below the dynamic range (and therefore quantifiable limits) of RT-qPCR assays but were able to be quantified using the novel droplet digital PCR (ddPCR). This study delivers new immunological tools for eco-immunologists studying cytokine gene expression in wildlife species and is to our knowledge, the first cytokine ddPCR approach to be reported in a pinniped species.

SELECTION OF CITATIONS
SEARCH DETAIL
...